Targets 2007 / 2008

The complex quadratic base field K with discriminant d = -4027

This example has been investigated by Scholz and Taussky [1], Heider and Schmithals [2], Brink [3],
and in our previous papers [4,5].

We give the complete data needed to determine the capitulation type and the group G=Gal(K2|K).
Computed in October, 1989, at the University of Graz, Computer Centre [4].

Counter, n = 2 Discriminant, d = -4027 3-class group of type (3,3) 3-class number, h = 9 Conductor, f = 1
The non-Galois absolute cubic subfields (L1,L2,L3,L4) of the four unramified cyclic cubic relative extensions N|K
Regulators, R 2.3 2.5 4.70 4.75
Class numbers, h 6 6 3 3
Polynomials, p(X) = X3 + C*X + D, with d(p) = i2*d
(C,D) (10,-1) (-44,-113) (43,-56) (-8,-15)
Indices, i 1 1 10 1
Fundamental units, e = (U + V*x + W*x2)/T, with P(x) = 0
U 0 -28 18 -7
V 1 -4 -13 2
W 0 1 -1 0
T 1 1 10 1
Splitting primes, q 43 13 19 61
Associated quadratic forms, F = a*X2 + b*X*Y + c*Y2
(a,b,c) (29,27,41) (13,9,79) (19,1,53) (17,11,61)
Represented primes, q 29, 43 13 19 17, 61
Associated ideal cubes, (x + y*d1/2)/2, with 4*q3 = x2 - d*y2
(x,y) (182,4) (69,1) (153,1) (125,1)
Principalization 2 3 3 1
Capitulation type D.10: (2,3,3,1) Group G in CBF1a(4,5) Contents


References:

[1] Arnold Scholz und Olga Taussky,
Die Hauptideale der kubischen Klassenkörper
imaginär quadratischer Zahlkörper
,
J. reine angew. Math. 171 (1934), 19 - 41

[2] Franz-Peter Heider und Bodo Schmithals,
Zur Kapitulation der Idealklassen
in unverzweigten primzyklischen Erweiterungen
,
J. reine angew. Math. 336 (1982), 1 - 25

[3] James R. Brink,
The class field tower for imaginary quadratic number fields of type (3,3),
Dissertation, Ohio State Univ., 1984.

[4] Daniel C. Mayer,
Dihedral fields of degree 2p,
Univ. Graz, 1989.

[5] Daniel C. Mayer,
Principalization in complex S3-fields,
Congressus Numerantium 80 (1991), 73 - 87

[6] Daniel C. Mayer,
Two-Stage Towers of 3-Class Fields over Quadratic Fields,
(Latest Update)
Univ. Graz, 2008.

[7] Daniel C. Mayer,
3-Capitulation over Quadratic Fields
with Discriminant |d| < 106 and 3-Class Group of Type (3,3)
,
(Latest Update)
Univ. Graz, Computer Centre, 2008.


Letters of Scholz to Hasse show the long and winding road
to the final results for this complex quadratic field:
(We gratefully acknowledge that these letters have been compiled and commented by Franz Lemmermeyer.)

October 24, 1927:
Scholz19271024

October 15, 1928:
Scholz19281015

October 24, 1928:
Scholz19281024a
Scholz19281024b

October 12, 1930:
Scholz19301012

November 29, 1931:
Scholz19311129

Navigation Center
Back to Algebra