Targets 2007 / 2008

Navigation Center 2007 / 2008

Topic Date
0. Summary of recent research results 2008 2008/03/26
1.1. Fung and Williams' range of complex cubic fields revisited
1.1.1. All complex quadratic fields -100000 < d < 0 2006/05/03
1.2. Selected quadruplets of complex cubic fields
1.2.2. The complex quadratic base field d= -4027 1989/10
1.2.17. The complex quadratic base field d= -21668 1989/11
1.2.78. The complex quadratic base field d= -50739 2007/07/31
1.2.210. The complex quadratic base field d= -124363 2003/05/31
1.2.268. The complex quadratic base field d= -159208 2003/06/19
1.2.463. The complex quadratic base field d= -262744 2005/12/22
2.1. Ennola and Turunen's classic range of totally real cubic fields
2.1.1. All totally real cubic fields 0 < d < 100000 2007/08/04
2.1.2. All totally real cubic fields 100000 < d < 200000 2007/08/05
2.1.3. All totally real cubic fields 200000 < d < 300000 2007/08/06
2.1.4. All totally real cubic fields 300000 < d < 400000 2007/08/07
2.1.5. All totally real cubic fields 400000 < d < 500000 2007/08/13
Breaking through beyond Ennola and Turunen's domain
2.1.6. All totally real cubic fields 500000 < d < 600000 2007/08/15
2.1.7. All totally real cubic fields 600000 < d < 700000 2009/11/09
2.1.8. All totally real cubic fields 700000 < d < 800000 2009/11/11
2.1.9. All totally real cubic fields 800000 < d < 900000 2009/11/26
2.1.10. All totally real cubic fields 900000 < d < 1000000 2009/12/11
2.2. Selected quadruplets of totally real cubic fields
2.2.21. The real quadratic base field d= 214712 2006/01/28
2.2.58. The real quadratic base field d= 494236 2008/02/05
2.2.66. The real quadratic base field d= 540365 2008/01/18
2.2.94. The real quadratic base field d= 710652 2009/11/10



*
Web master's e-mail address:
contact@algebra.at
*

Back to Algebra