Topic
|
Date
|
0. Summary of recent research results 2008
|
2008/03/26
|
1.1. Fung and Williams' range of complex cubic fields revisited
|
1.1.1. All complex quadratic fields -100000 < d < 0
|
2006/05/03
|
1.2. Selected quadruplets of complex cubic fields
|
1.2.2. The complex quadratic base field d= -4027
|
1989/10
|
1.2.17. The complex quadratic base field d= -21668
|
1989/11
|
1.2.78. The complex quadratic base field d= -50739
|
2007/07/31
|
1.2.210. The complex quadratic base field d= -124363
|
2003/05/31
|
1.2.268. The complex quadratic base field d= -159208
|
2003/06/19
|
1.2.463. The complex quadratic base field d= -262744
|
2005/12/22
|
2.1. Ennola and Turunen's classic range of totally real cubic fields
|
2.1.1. All totally real cubic fields 0 < d < 100000
|
2007/08/04
|
2.1.2. All totally real cubic fields 100000 < d < 200000
|
2007/08/05
|
2.1.3. All totally real cubic fields 200000 < d < 300000
|
2007/08/06
|
2.1.4. All totally real cubic fields 300000 < d < 400000
|
2007/08/07
|
2.1.5. All totally real cubic fields 400000 < d < 500000
|
2007/08/13
|
Breaking through beyond Ennola and Turunen's domain
|
2.1.6. All totally real cubic fields 500000 < d < 600000
|
2007/08/15
|
2.1.7. All totally real cubic fields 600000 < d < 700000
|
2009/11/09
|
2.1.8. All totally real cubic fields 700000 < d < 800000
|
2009/11/11
|
2.1.9. All totally real cubic fields 800000 < d < 900000
|
2009/11/26
|
2.1.10. All totally real cubic fields 900000 < d < 1000000
|
2009/12/11
|
2.2. Selected quadruplets of totally real cubic fields
|
2.2.21. The real quadratic base field d= 214712
|
2006/01/28
|
2.2.58. The real quadratic base field d= 494236
|
2008/02/05
|
2.2.66. The real quadratic base field d= 540365
|
2008/01/18
|
2.2.94. The real quadratic base field d= 710652
|
2009/11/10
|