Statistics and Minima:
-
Here we present the results of an application
of our New Algorithm for determining the
Second p-Class Group
Gp2(K)
of a number field K
by computing the Kernels and Targets
of its Transfers to maximal subgroups.
We set p = 2 and obtain the complete
statistical evaluation of the first 100
complex or real quadratic fields
K = Q(D1/2)
or bicyclic biquadratic Dirichlet fields
K = Q((-1)1/2,D1/2)
having a 2-class group of type (2,2).
The distribution visualizes
the population by G22(K)
of vertices on the
coclass graph G(2,1) of
2-groups of coclass 1,
consisting of
-
the abelian group of type (2,2),
-
the quaternion group Q(8),
-
the generalized quaternion groups Q(2n),
-
the dihedral groups D(2n),
-
the semidihedral groups S(2n).
|
-
Top-Down Algorithm:
*************************************************************************
First Step: with the aid of PARI/GP we compute a list of
the first 100 complex, resp. real, quadratic number fields K,
resp. bicyclic biquadratic special Dirichlet fields K,
having a 2-class group Cl2(K) of type (2,2).
--------------------------------------------------------------
Second Step: by means of MAGMA we iterate through the list
of discriminants d(K) = D computed in the first step and determine
-
the 2-principalization kernel of K in its three
unramified cyclic quadratic extensions N1,N2,N3
(the transfer kernel type TKT),
-
the structure of the 2-class groups of N1,N2,N3
(the transfer target type TTT).
--------------------------------------------------------------
Third Step: we use our unambiguous criteria
to identify the second 2-class group G22(K) of K
by the combination of TKT and TTT in the following table.
--------------------------------------------------------------
G22(K)
|
TKT
|
Cl2(N1)
|
Cl2(N2)
|
Cl2(N3)
|
Cl2(F21(K))
|
<4,2> ~ (2,2)
|
(0,0,0)
|
(2)
|
(2)
|
(2)
|
1
|
<8,4> ~ Q(8)
|
(1,2,3)
|
(4)
|
(4)
|
(4)
|
(2)
|
<8,3> ~ D(8)
|
(0,3,2)
|
(4)
|
(2,2)
|
(2,2)
|
(2)
|
<16,9> ~ Q(16)
|
(1,3,2)
|
(8)
|
(2,2)
|
(2,2)
|
(4)
|
<16,8> ~ S(16)
|
(2,3,2)
|
(8)
|
(2,2)
|
(2,2)
|
(4)
|
<16,7> ~ D(16) ↑
|
(0,3,2)
|
(8)
|
(2,2)
|
(2,2)
|
(4)
|
<32,20> ~ Q(32) ↑
|
(1,3,2)
|
(16)
|
(2,2)
|
(2,2)
|
(8)
|
<32,19> ~ S(32) ↑
|
(2,3,2)
|
(16)
|
(2,2)
|
(2,2)
|
(8)
|
<32,18> ~ D(32) ↑2
|
(0,3,2)
|
(16)
|
(2,2)
|
(2,2)
|
(8)
|
<64,54> ~ Q(64) ↑2
|
(1,3,2)
|
(32)
|
(2,2)
|
(2,2)
|
(16)
|
Remarks:
1. Only the groups <4,2> and <8,4> can be identified
by their unique TKT or TTT alone.
The group <8,3> is characterized by its TTT.
2. Neither the coarse TKTs by Kisilevsky for complex quadratic fields,
or by Benjamin and Snyder for real quadratic fields K,
nor the quadratic residue conditions for prime divisors
of the discriminant by Azizi, Mouhib and Taous
for bicyclic biquadratic Dirichlet fields K
are able to determine the order of G22(K)
for higher excited states of D(2n), Q(2n) and S(2n).
3. Our new criteria use the TTT to resolve the
infinite sequences sharing a common TKT.
Of course, they would have been useless
in times before availability of Pari/GP and Magma.
*************************************************************************
-
Statistics:
G22(K)
|
Abelian
|
Dihedral
|
Quaternion
|
Quaternion
|
Semidihedral
|
|
(2,2)
|
D(2n), n ≥ 3
|
Q(8)
|
Q(2n), n ≥ 4
|
S(2n), n ≥ 4
|
K Dirichlet
|
39
|
20 + 8 ↑ + 5 ↑2
|
9
|
10 + 8 ↑ + 1 ↑2
|
0
|
K complex
|
38
|
8 + 1 ↑
|
18
|
18 + 10 ↑ + 1 ↑2
|
4 + 2 ↑
|
K real
|
59
|
24
|
10
|
5 + 1 ↑
|
1
|
The 2-tower consists of a single stage
if and only if G22(K) is abelian.
For real quadratic fields, single stage 2-towers are dominating with 59%
and excited states occur with considerable delay.
For complex quadratic fields, all quaternion groups together
are populated most densely with 47%.
However, if different variants of quaternion groups are separated,
then abelian groups with 38% are the high-champs again.
For bicyclic biquadratic Dirichlet fields,
single stage 2-towers are slightly dominating with 39%
closely followed by dihedral (33%) and quaternion (28%) groups.
It was proved in several steps by Abdelmalek Azizi
[Az]
,
[AAI]
,
[Az1]
and by
Ali Mouhib
in cooperation with Azizi
that semidihedral groups are impossible
for bicyclic biquadratic Dirichlet fields.
-
Minimal Discriminants:
G22(K)
|
Abelian
|
Dihedral
|
Quaternion
|
Quaternion
|
Semidihedral
|
|
(2,2)
|
D(2n), n ≥ 3
|
Q(8)
|
Q(2n), n ≥ 4
|
S(2n), n ≥ 4
|
|D|min of K Dirichlet
|
51
|
123
|
120
|
168
|
impossible
|
|
|
771
|
|
744
|
|
|
|
1563
|
|
3048
|
|
|D|min of K complex
|
84
|
408
|
120
|
195
|
340
|
|
|
1515
|
|
555
|
2132
|
|
|
|
|
2355
|
|
Dmin of K real
|
680
|
1160
|
520
|
1740
|
3965
|
|
|
|
|
4520
|
|
Here we list minimal discriminants of ground states in the first row,
and of excited states in additional rows.
*************************************************************************
-
Details for 100 discriminants
of bicyclic biquadratic Dirichlet fields
K = Q((-1)1/2,D1/2)
with complex quadratic subfields
k = Q((-D)1/2):
Cases with non-abelian group G22(K)
are printed in red or green boldface font.
Cases where the complex quadratic subfield k is also of type (2,2)
are marked by ≅ if the TKTs of K and k coincide,
by # if k has an abelian group G22(k),
and by ⊗ if k has a semidihedral group G22(k).
No.
|
D
|
factors
|
TKT
|
κ(K)
|
G22(K)
|
1
|
51
|
3*17
|
a.1
|
(000)
|
(2,2)
|
2
|
119
|
7*17
|
a.1
|
(000)
|
(2,2)
|
3
|
120
|
2*3*5
|
≅Q.5
|
(123)
|
Q(8)
|
4
|
123
|
3*41
|
d.8
|
(032)
|
D(8)
|
5
|
168
|
2*3*7
|
#Q.6
|
(132)
|
Q(16)
|
6
|
187
|
11*17
|
a.1
|
(000)
|
(2,2)
|
7
|
267
|
3*89
|
a.1
|
(000)
|
(2,2)
|
8
|
280
|
2*5*7
|
≅Q.6
|
(132)
|
Q(16)
|
9
|
287
|
7*41
|
d.8
|
(032)
|
D(8)
|
10
|
312
|
2*3*13
|
≅Q.6
|
(132)
|
Q(16)
|
11
|
339
|
3*113
|
d.8
|
(032)
|
D(8)
|
12
|
340
|
(2*)5*17
|
⊗d.8
|
(032)
|
D(8)
|
13
|
391
|
17*23
|
a.1
|
(000)
|
(2,2)
|
14
|
411
|
3*137
|
d.8
|
(032)
|
D(8)
|
15
|
440
|
2*5*11
|
≅Q.6
|
(132)
|
Q(16)
|
16
|
451
|
11*41
|
d.8
|
(032)
|
D(8)
|
17
|
511
|
7*73
|
a.1
|
(000)
|
(2,2)
|
18
|
527
|
17*31
|
a.1
|
(000)
|
(2,2)
|
19
|
623
|
7*89
|
a.1
|
(000)
|
(2,2)
|
20
|
679
|
7*97
|
a.1
|
(000)
|
(2,2)
|
21
|
696
|
2*3*29
|
≅Q.5
|
(123)
|
Q(8)
|
22
|
699
|
3*233
|
a.1
|
(000)
|
(2,2)
|
23
|
728
|
2*7*13
|
≅Q.6
|
(132)
|
Q(16)
|
24
|
744
|
2*3*31
|
#Q.6↑
|
(132)
|
Q(32)
|
25
|
760
|
2*5*19
|
≅Q.6↑
|
(132)
|
Q(32)
|
26
|
771
|
3*257
|
d.8↑
|
(032)
|
D(8)
|
27
|
779
|
19*41
|
d.8
|
(032)
|
D(8)
|
28
|
803
|
11*73
|
a.1
|
(000)
|
(2,2)
|
29
|
843
|
3*281
|
a.1
|
(000)
|
(2,2)
|
30
|
888
|
2*3*37
|
≅Q.6↑
|
(132)
|
Q(32)
|
31
|
920
|
2*5*23
|
≅Q.6
|
(132)
|
Q(16)
|
32
|
1059
|
3*353
|
d.8↑
|
(032)
|
D(8)
|
33
|
1064
|
2*7*19
|
#Q.6
|
(132)
|
Q(16)
|
34
|
1144
|
2*11*13
|
≅Q.5
|
(123)
|
Q(8)
|
35
|
1203
|
3*401
|
a.1
|
(000)
|
(2,2)
|
36
|
1207
|
17*71
|
a.1
|
(000)
|
(2,2)
|
37
|
1272
|
2*3*53
|
≅Q.5
|
(123)
|
Q(8)
|
38
|
1343
|
17*79
|
a.1
|
(000)
|
(2,2)
|
39
|
1347
|
3*449
|
a.1
|
(000)
|
(2,2)
|
40
|
1460
|
(2*)5*73
|
⊗d.8
|
(032)
|
D(8)
|
41
|
1464
|
2*3*61
|
≅Q.6↑
|
(132)
|
Q(32)
|
42
|
1563
|
3*521
|
d.8↑2
|
(032)
|
D(8)
|
43
|
1687
|
7*241
|
a.1
|
(000)
|
(2,2)
|
44
|
1691
|
19*89
|
a.1
|
(000)
|
(2,2)
|
45
|
1707
|
3*521
|
d.8↑2
|
(032)
|
D(8)
|
46
|
1720
|
2*5*43
|
≅Q.5
|
(123)
|
Q(8)
|
47
|
1779
|
3*593
|
d.8
|
(032)
|
D(8)
|
48
|
1799
|
7*257
|
d.8↑
|
(032)
|
D(8)
|
49
|
1819
|
17*107
|
a.1
|
(000)
|
(2,2)
|
50
|
1843
|
19*97
|
a.1
|
(000)
|
(2,2)
|
51
|
1851
|
3*617
|
a.1
|
(000)
|
(2,2)
|
52
|
1880
|
2*5*47
|
≅Q.6↑
|
(132)
|
Q(32)
|
53
|
1896
|
2*3*79
|
#Q.6↑
|
(132)
|
Q(32)
|
54
|
1923
|
3*641
|
a.1
|
(000)
|
(2,2)
|
55
|
1927
|
41*47
|
d.8
|
(032)
|
D(8)
|
56
|
1940
|
(2*)5*97
|
⊗d.8
|
(032)
|
D(8)
|
57
|
1972
|
(2*)17*29
|
⊗d.8
|
(032)
|
D(8)
|
58
|
1976
|
2*13*19
|
≅Q.5
|
(123)
|
Q(8)
|
59
|
2024
|
2*11*23
|
#Q.6
|
(132)
|
Q(16)
|
60
|
2047
|
23*89
|
a.1
|
(000)
|
(2,2)
|
61
|
2123
|
11*193
|
a.1
|
(000)
|
(2,2)
|
62
|
2132
|
(2*)13*41
|
⊗d.8↑
|
(032)
|
D(8)
|
63
|
2147
|
19*113
|
d.8
|
(032)
|
D(8)
|
64
|
2191
|
7*313
|
d.8
|
(032)
|
D(8)
|
65
|
2227
|
17*131
|
a.1
|
(000)
|
(2,2)
|
66
|
2231
|
23*97
|
a.1
|
(000)
|
(2,2)
|
67
|
2260
|
(2*)5*113
|
⊗d.8↑
|
(032)
|
D(8)
|
68
|
2263
|
31*73
|
a.1
|
(000)
|
(2,2)
|
69
|
2283
|
3*761
|
d.8
|
(032)
|
D(8)
|
70
|
2360
|
2*5*59
|
≅Q.6↑
|
(132)
|
Q(32)
|
71
|
2363
|
17*139
|
a.1
|
(000)
|
(2,2)
|
72
|
2424
|
2*3*101
|
≅Q.5
|
(123)
|
Q(8)
|
73
|
2427
|
3*809
|
d.8↑2
|
(032)
|
D(8)
|
74
|
2471
|
7*353
|
d.8↑
|
(032)
|
D(8)
|
75
|
2472
|
2*3*103
|
#Q.6
|
(132)
|
Q(16)
|
76
|
2516
|
(2*)17*37
|
⊗d.8
|
(032)
|
D(8)
|
77
|
2552
|
2*11*29
|
≅Q.5
|
(123)
|
Q(8)
|
78
|
2563
|
11*233
|
a.1
|
(000)
|
(2,2)
|
79
|
2571
|
3*857
|
d.8↑2
|
(032)
|
D(8)
|
80
|
2599
|
23*113
|
d.8
|
(032)
|
D(8)
|
81
|
2616
|
2*3*109
|
≅Q.6
|
(132)
|
Q(16)
|
82
|
2643
|
3*881
|
d.8
|
(032)
|
D(8)
|
83
|
2651
|
11*241
|
a.1
|
(000)
|
(2,2)
|
84
|
2680
|
2*5*67
|
≅Q.5
|
(123)
|
Q(8)
|
85
|
2728
|
2*11*31
|
#Q.6↑
|
(132)
|
Q(32)
|
86
|
2740
|
(2*)5*137
|
⊗d.8↑
|
(032)
|
D(8)
|
87
|
2747
|
41*67
|
d.8
|
(032)
|
D(8)
|
88
|
2759
|
31*89
|
a.1
|
(000)
|
(2,2)
|
89
|
2771
|
17*163
|
a.1
|
(000)
|
(2,2)
|
90
|
2787
|
3*929
|
a.1
|
(000)
|
(2,2)
|
91
|
2839
|
17*167
|
a.1
|
(000)
|
(2,2)
|
92
|
2859
|
3*953
|
d.8↑2
|
(032)
|
D(8)
|
93
|
2863
|
7*409
|
d.8↑
|
(032)
|
D(8)
|
94
|
2911
|
41*71
|
d.8
|
(032)
|
D(8)
|
95
|
2931
|
3*977
|
a.1
|
(000)
|
(2,2)
|
96
|
3031
|
7*433
|
a.1
|
(000)
|
(2,2)
|
97
|
3048
|
2*3*127
|
#Q.6↑2
|
(132)
|
Q(64)
|
98
|
3091
|
11*281
|
a.1
|
(000)
|
(2,2)
|
99
|
3139
|
43*73
|
a.1
|
(000)
|
(2,2)
|
100
|
3147
|
3*1049
|
a.1
|
(000)
|
(2,2)
|
|
|
|
Explanation:
|