POWER-COMMUTATOR PRESENTATIONS FOR INFINITE SEQUENCES OF
3-GROUPS

DANIEL C. MAYER

ABSTRACT. For certain infinite sequences of 3-groups G with derived length 2 < dI(G) < 3,
and either with G/G" ~ (3,3), coclass cc(G) > 1, or with G/G’ ~ (9,3), coclass cc(G) > 3,
parametrized pc-presentations are given in dependence on the class ¢ = cl(G).

1. PRELIMINARIES

For the detailed description of p-groups G with abelianization G/G’ of type (p,p) or (p?,p),
we need two advanced invariants which coincide for any p-group G and for its metabelianization
G/G" [18, Thm. 1.1, p. 402].

Definition 1.1. Let G be a p-group of generator rank d(G) = d, put m = E, let Hy,...,H,,

p—1
be the maximal (normal) subgroups (of index p) in G, and denote by
T;,: G/G' — H;/H., gG' — T;(9G")
the Artin transfer from G to H;, for 1 < i <m, [17, (4), p. 470].

The family »(G) = (ker(T;))1<i<m is called the transfer kernel type, TKT, of G, and the family
7(G) = (H;/H])1<i<m is called the transfer target type, TTT, of G.

In this article, we shall be concerned with 3-groups G of particular TKTs, resp. pTKTs
(punctured), with d = 2, m = 4, specified at the beginning of each section. By the symbol
~ we indicate that some of the TKTs are equivalent, since they generate the same orbit under
action of the symmetric group Sy [17].

Definition 1.2. An infinite sequence of p-groups (G;);>0 is called a periodic sequence or coclass
family if its members

(1) share a common coclass cc(G,;) =1 > 1,

(2) are descendants of a common ancestor My, which is the root of a coclass tree 7,.(Mpy),

(3) share a common TKT (G;),

(4) share m — 1 common components of the TTT 7(G;), whereas the single remaining com-
ponent depends on the nilpotency class,

(5) share a common parametrized pc-presentation G; = (x1,...,%q | Re,(x1,...,2q)) having
the nilpotency class ¢; = cl(G;) as the only parameter.

Remark 1.1. The mainline of the coclass tree 7,.(My) consists of one or more periodic sequences
(M;);>0, whose parametrized pc-presentations approach the pro-p presentation of their projective
limit L = lim j>o M; when the class ¢; = cl(M;) tends to infinity.

In the sequel we characterize 3-groups by their identifer in the SmallGroups library [4] and their
descendants of order bigger than 37 by the notation used in the ANUPQ package [14] of GAP [13]
and MAGMA [15].
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2. 3-Groups G WITH G/G’ ~ (3,3)

For coclass cc(G) = 1 and abelianization G/G’ ~ (3,3) we need
e all three cases of TKTs in section a, that is,
a.l, 2 =(0,0,0,0),
a.2, » = (1,0,0,0), and
a.3, % = (2,0,0,0) ~ (3,0,0,0) ~ (4,0,0,0).

2.1. Periodic 3-groups on coclass tree 7;((9,2)). As a familiar entrance, we begin by showing
that certain 3-groups of class at least 5 on the coclass tree 77((9,2)) belong to 4 + 3 = 7 periodic
coclass sequences with period length 2.

Theorem 2.1. For each integer ¢ > 5, there are 4 metabelian descendants G of (9,2), having
nilpotency class cl(G) = ¢, coclass cc(G) = 1, and order |G| = 3°*, with two generators z,y and
parametrized pc-presentation

G = <x7ya827537847"~,50 |

s2 =[y,a], sj =[sj—1,2] for3<j<c,
2

c?

s? :s?+25j+3 for2<j<c—3, s =5
R(z) =1, Ry)=1),
where the relators R(x) and R(y) are given by

(1) Rlz) — z3 1 for G of TKT a.1 or a.3,

s, for G of TKT a.2,

y3s3_2521 for G of TKT a.l or a.2,
(2) Ry) = y3s32stsot or

y38528Z18;2 for G of TKT a.3.

For odd class ¢ > 5 the 4 groups are pairwise non-isomorphic o-groups.
For even class ¢ > 6, the pair of groups sharing the same TKT (a.3) is isomorphic, and thus only
3 groups are pairwise non-isomorphic, and only the mainline group with TKT a.l is a o-group.

Remark 2.1. The presentations in Theorem 2.1 are similar to but not identical with Blackburn’s
well-known presentations [5]. See also [17, § 2, pp. 469-470].

Remark 2.2. Pro-3 presentations for the projective limit L of the mainline of coclass tree
71((9,2)) are given in two different forms by Eick and Feichtenschlager [9, § 9.2, p. 11] resp.
[12, App. A, pp. 90-91]:

(1) either for L as an extension of v3(L) ~ Z3 by L/v3(L),

L = < ,Y,S2,t1,12 | [y,l‘] = 52, [527x] =1, [tlvx] = 1o, [thx} = t1_4t2_2v
23 =1, 3 =1y, 53 =173,
(2) or for L as an extension of v4(L) =~ Z3 by L/v4(L),
L = (x,9,8,83t,ts | [y,2] =52, [s2,2] = 83, [s3,2] = ta, [t1,2] =13, [ta, 2] = tf2t§27
3

(
23 =1, y¥ =53y, 83 =171y, 55 =t ).
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For coclass cc(G) > 2 and abelianization G/G’ ~ (3, 3) we need

e all four cases of TKTSs in section E, that is,
E.6, »=(1,1,2,2),
E.14, » = (3,1,2,2) ~ (4,1,2,2),
E.8, % =(1,1,3,4), and
E.9, »=(3,1,3,4) ~ (4,1,3,4),
e both TKTs in section c, that is,
c.18, = (0,1,2,2), and
c.21, 2= (0,1,3,4),
e TKT H4, »»=(2,1,2,2),
e TKT G.16, » = (2,1,3,4).

2.2. Periodic 3-groups on coclass tree 75((243,6)). Now we show that certain 3-groups of
class at least 5 on the coclass tree 75((243,6)) belong to 6 + 4 = 10 periodic coclass sequences
with period length 2.

Theorem 2.2. For each integer ¢ > 5, there are 6 metabelian descendants G of (243,6), having
nilpotency class cl(G) = ¢, coclass cc(G) = 2, and order |G| = 32, with two generators x,y and
parametrized pc-presentation

G = (x,9,52,t3,53,84,...,5 |

s = [y, x], t3 = [s2,y], 5 = [sj—1,2] for 3<j <e¢,
$ =50 084 for2<j<c—3, s;_, =51, t3=1,
R(z) =1, Ry) =1),

where the relators R(x) and R(y) are given by

S

z? for G of TKT c.18 or HA4,
(3) R(z) = )
387 for G of TKT E.6 or E.14,
y?’sgzsll for G of TKT c.18 or E.6,
(4) R(y) = <y’s3Zsitsst or

yPsy32sytss? for G oof TKT H.4 or E.14.

For odd class ¢ > 5 the 6 groups are pairwise non-isomorphic o-groups.

For even class ¢ > 6, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18
1S a o-group.
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Proof. G is a metabelian 3-group with abelian commutator subgroup G’ = (sa,t3, 83, 84, - - - , S¢)-
Due to the nilpotency relation [s.,z] = 1, G is of class cl(G) = c¢. Since t3 is not contained in the
subgroup (ss, 84, ..., S.) and the centre of G is given by (1(G) = (t3, s¢), the lower central series
of G has a single bicyclic factor v3 = (3, $3,74(G)) and G is of coclass cc(G) = 2, and thus of
order |G| = 32,

The four maximal subgroups of G are given by Hy = (y,G’"), Hy = (x,G"), Hs = (zy,G'),
Hy = (zy?,G").

For the investigation of the transfers

G#H!  itgeG\H,

Ti: G/G' — Hi/H], gG'
/G"— H;/H;, g H{gss(h)H; if g € H;,

where S3(h) = 1+ h + h? € Z[G] for some h € G\ H;, generators of the derived subgroups
H!, 1 <i <4, must be determined. Since G’ is a normal subgroup of index 3 in each maximal
subgroup, we obtain H! = [G’, H;] = (G')%~! when H; = (g;, G'), and some commutator calculus
yields

Hy (ts),

H) = (83,84,...,5¢),
H, = <53t3,54, 5 8e)s
H), = <53t3, S4y. -y 8c)-

Now we can calculate the transfer kernels. For this purpose we represent the elements g € G
in the form g = 27y’ mod G’ and solve the congruence T;(gG’) = 1 mod H/.

First we derive expressions for the transfer images of the generators x,y. Since z,y ¢ H; and
4,8 € H] for i = 3,4, we have T;(zG’) = 2> =1 mod H] and T}(yG’) = y> = s3 mod H] for
i=3,4.

Further, since y ¢ Hs and ss,s4,8. € Hj, we have To(yG') = y
x ¢ Hy, we have T} (2G") = 23 mod H].

However, for the action of trace elements as symbolic exponents we need [17, eqn. (6), 486).

Since x € Hy and s. € Hj, we have Ty(z) = 2530 = 23z, y]*[[z,9],y] = 1 - 55 [52 2yl

3 =1 mod H}, and since

sy2s5 y, 857 = [y,52]551 =t;' mod H).

Since y € H; and since we can prove by induction that 5§5255 =1, we have T1(y) = y

V3y, 23 [[y, 2], 2] = s3545¢s353 = 535459525553 = s353855¢ = s¢ mod H for some exponent 0 <
e < 2.

Consequently, we obtain the following expressions for the transfer images:

S3(x)

Ty(aiy'c) = sf_,l mod Hj if 23 =1, y® = s?sys°,
sitet mod H| if 23 = s., y> = s2s45¢,

To(2’y*G’) = t37 mod Hj,

Ty(2'y*G") = s2* mod H for i € {3,4}.
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2.3. Periodic 3-groups on coclass tree 75((243,8)). Similarly to the previous section, we now
show that certain 3-groups of class at least 6 on the coclass tree 75((243,8)) belong to 6 +4 = 10
periodic coclass sequences with period length 2.

Theorem 2.3. For each integer ¢ > 6, there are 6 metabelian descendants G of (243,8), having
nilpotency class cl(G) = ¢, coclass cc(G) = 2, and order |G| = 372, with two generators x,y and
parametrized pc-presentation

G = (z,9,t,83,t3,ta,...,t
ta = ly,z], s3 = [t2,2], t; = [tj—1, 9] for 3<j <,
8 =13 otjys for2<j<c—3,t) y =12, s3=1,
R(y) =1, R(z) =1),
where the relators R(y) and R(x) are given by

y38§1 for G of TKT c.21 or G.16,
(5) R(y) = 3 —1,-1
y°sy t, for G of TKT E.8 or E.9,
x?’tgltZthl for G of TKT c.21 or E.8,
(6) R(z) = a82t 0 or

et 22 for Goof TKT G.16 or E.9.

For odd class ¢ > 7 the 6 groups are pairwise non-isomorphic o-groups.

For even class ¢ > 6, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21
18 a o-group.

Remark 2.3. Eick, Leedham-Green, Newman, and O’Brien [11] have determined the projective
limit L = lim j>¢ M; of the metabelian mainline (M;);>o of the coclass tree 75(My) with root

My = (243,6), resp. (243,8). It is given by the pro-3 presentation

L={(ta,z | =25 [ttY]=-z T =22
2= L [za] =1, [zt =1, ),
where f =0, resp. f = 1. The centre of L is the cyclic group (;(L) = (z) of order 3.

The mainline vertices of 73(Mj) are the o-groups

My ~ L))
of order 3% and odd class 2¢ + 3,
Ql+2 b+l al41
Moy = L/ 67107
of order 3%T® and even class 2¢ + 4,

for £ > 0.
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Proof. G is a metabelian 3-group with abelian commutator subgroup G’ = (ta, s3,t3,t4,...,tc).
Due to the nilpotency relation [t.,z] = 1, G is of class cl(G) = c. Since s3 is not contained in the
subgroup (t3,t4,...,t.) and the centre of G is given by (1 (G) = (s3, tc), the lower central series of

G has a single bicyclic factor 3 = (s3,t3,74(G)) and G is of coclass cc(G) = 2, and thus of order
|G| = 32

The four maximal subgroups of G are given by Hy = (z,G’), Hy = (y,G’), Hs = (yz,G"),
Hy = (yz?,G").

For the investigation of the transfers

G#H,  itgeG\H,

Ti: G/G' — Hi/H], gG'
/G"— H;/H;, g H{gss(h)H; if g € H;,

where S3(h) = 1+ h + h? € Z[G] for some h € G\ H;, generators of the derived subgroups
H!, 1 <i <4, must be determined. Since G’ is a normal subgroup of index 3 in each maximal
subgroup, we obtain H! = [G’, H;] = (G’)%~! when H; = (g;, G'), and some commutator calculus
yields

Hi = (s3),

H) = (t3,tg,...,t.),
H, = (t383,t4,...,tc),
H), = (tzsi tq,... t.).

Now we can calculate the transfer kernels. For this purpose we represent the elements g € G
in the form g = y/2* mod G’ and solve the congruence T;(¢gG’) = 1 mod H..

First we derive expressions for the transfer images of the generators x,y. Since z,y ¢ H; and
ty,ts,t. € H! for i = 3,4, we have T;(yG') = y* = s3 mod H} and T(xG’) = 23 =t mod H|
for ¢ = 3, 4.

Further, since x ¢ Hy and t3,t4,t5,t. € Hb, we have To(xG') = 2 = 1 mod H}, and since
y & Hy and s3 € Hj, we have Ty (yG') = y® =5 mod Hj with suitable 0 < ¢ < 1.

However, for the action of trace elements as symbolic exponents we need [17, equn. (6), p. 486].

Since y E Hy and ty,t5,t, € Hy, we have Ty(y) = y*®) = o3[y, 2]3[[y, x], 2] = s3t5 - t3s3 =
s3t3tstS = s3 mod HJ.

Since € H; and since we can prove by induction that sjsiss = 1, we have Ty (x) = 25 =
23z, y]3 [, 9], y] = tatatstoty S5t = tatitstot; 25 gt =& mod HY for some exponent 0 < e < 2.

Consequently, we obtain the following expressions for the transfer images:

: tet d Hj if y* = 3 = tatitste
Tl(ijeG/) = c zmo 1 / 1 yg 83, X s 3bq 2 ¢
titet mod Hi if y3 = s3t., 2 = t3titste,
To(y’2'G’) = 53 mod Hj,
Ti(y'2*G’) = s4t5 mod H for i € {3,4}.
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2.4. Periodic 3-groups on coclass tree 73((729,49) — #2;1). The following result shows that
certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree 73((729,49) — #2; 1),
belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.4. For each integer ¢ > 6, there are 6 descendants G of (729,49) — #2;1, having
nilpotency class cl(G) = ¢, coclass cc(G) = 3, order |G| = 373, and derived length d1(G) = 3,
with two generators x,y and parametrized pc-presentation

G = <xay7527t3353754a"'7507u5 |

S2 = [yax]a t3 = [827?/}7 S5 = [Sj—lax] f07'3 S.] S c,

Us = [8379} = [S4>y]7 [83782] = u§7 tg = U;

Sg = SZS5U5, 83 2

= s?+23j+3 for3<j<c—3, s _, =52
R(z)=1, R(y)=1),

where the relators R(x) and R(y) are given by equations (3) and (4).

For odd class ¢ > 7 the 6 groups are pairwise non-isomorphic o-groups.

For even class ¢ > 6, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic,

and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18

1S @ o-group.

2.5. Periodic 3-groups on coclass tree 73((729,54) — #2;3). The following result shows that
certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree 73((729, 54) — #2; 3),
belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.5. For each integer ¢ > 6, there are 6 descendants G of (729,54) — #2;3, having

nilpotency class cl(G) = ¢, coclass cc(G) = 3, order |G| = 33, and derived length d1(G) = 3,
with two generators x,y and parametrized pc-presentation

G = <x’yat2783at3at4a"'7t0au5 |
t2 = [y7x]7 53 = [tZum]a t] = [tjfby] fO’I" 3 S J S C,
us = [ts, x] = [ta, 2], [t3,t2] = us, 55 = u2,
ts =t3t t3 =12 otiis for3<j<c—3, t3_, =1t
2 4lsUs, Tj j4+2lj+3 JOT S =] = ¢C ) Ye—2 ¢’
R(y)=1, R(x)=1),
where the relators R(y) and R(z) are given by equations (5) and (6).
For odd class ¢ > 7 the 6 groups are pairwise non-isomorphic o-groups.
For even class ¢ > 6, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic,

and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21
1S a o-group.
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3. 3-GrROUPS G WITH G/G" ~ (9,3)

For coclass cc(G) > 3 and abelianization G/G’ ~ (9,3) we need
e pTKT C.4, » = (3,1,1;3),
e two pTKTs in section D,
D.5, » = (2,1,1;3), and
D.10, 5 = (4,1,1;3),
o PTKT d.10, 5 = (0,1,1;3),
o pTKT B.2, > = (1,1,1;3).
3.1. Periodic 3-groups on coclass tree 73((729,13)). Similarly as in the previous sections, we
show that certain 3-groups of class at least 8 on the coclass tree 73(({729,13)) belong to 9+5 = 14
periodic coclass sequences with period length 2.

Theorem 3.1. For each integer ¢ > 8, there are 9 metabelian descendants G of (729,13), having
nilpotency class cl(G) = ¢, coclass cc(G) = 3, and order |G| = 3°3, with two generators x,y and
parametrized pc-presentation

G = (my, 7t 83,t3,ta,...,tc |
=% ty = [y,z], s3=[ta, 7], t; = [tj_1,y] for 3<j <e,
8 =17 otjs for2<j<c—3, ] , =12, s5=1,
[1,y] = tatdts, R(y) =1, R(r)=1),
where the relators R(y) and R(T) are given by

y3 for G of pTKT d.10 or B.2(1) or B.2(2),

(7) R(y) = <v’t.t  for G of pTKT C.4(1) or D.5(2) or D.10(1),
Y372 for G of pTKT C.4(2) or D.5(1) or D.10(2),
735§1tg2tg2t7_1 for G of pTKT d.10 or D.10,

(8) R(r) = (m3s3't5%tg%t- MY for G of pTKT B.2(1) or C.4(1) or D.5(1),

gtz 2t 2t o2 for G oof pTKT B.2(2) or C.4(2) or D.5(2).
For odd class ¢ > 9 the 9 groups are pairwise non-isomorphic o-groups.
For even class ¢ > 8, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10)

are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group
with pTKT d.10 is a o-group.
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3.2. Periodic 3-groups on coclass tree 74((2187,168) —#2; 7). The following result shows that
certain 3-groups of class at least 8 on the entirely non-metabelian coclass tree 74((2187,168) —
#2;7), belong to 9 + 5 = 14 periodic coclass sequences with period length 2.

Theorem 3.2. For each integer ¢ > 8, there are 9 descendants G of (2187,168) — #2;7, having
nilpotency class cl(G) = ¢, coclass cc(G) = 4, order |G| = 3T, and derived length dI(G) = 3,
with two generators x,y and parametrized pc-presentation

G = <z7y77_7t27537t37t47"'7tcau5 |
T = 1'37 ty = [yvx]v 83 = [t27$]’ tj = [tjflvy] fO?”g é] < c,
us = [t3, 7] = [ta, ], [T t2] = [t3,t2] = us, 53 = uz,
t5 =t3tsus, 13 =17 otjs for3<j<c—3, t3 , =12,
[T’ y] = t4t§t6a R(y) = 15 R(T) =1 >7
where the relators R(y) and R(T) are given by equations (7) and (8).
For odd class ¢ > 9 the 9 groups are pairwise non-isomorphic o-groups.
For even class ¢ > 8, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10)

are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group
with pTKT d.10 is a o-group.
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