POWER-COMMUTATOR PRESENTATIONS FOR INFINITE SEQUENCES OF 3-GROUPS

DANIEL C. MAYER

ABSTRACT. For certain infinite sequences of 3-groups G with derived length $2 \leq dl(G) \leq 3$, and either with $G/G' \simeq (3,3)$, coclass $cc(G) \geq 1$, or with $G/G' \simeq (9,3)$, coclass $cc(G) \geq 3$, parametrized pc-presentations are given in dependence on the class c = cl(G).

1. Preliminaries

For the detailed description of p-groups G with abelianization G/G' of type (p, p) or (p^2, p) , we need two advanced invariants which coincide for any p-group G and for its metabelianization G/G'' [18, Thm. 1.1, p. 402].

Definition 1.1. Let G be a p-group of generator rank d(G) = d, put $m = \frac{p^d - 1}{p-1}$, let H_1, \ldots, H_m be the maximal (normal) subgroups (of index p) in G, and denote by

$$T_i: G/G' \to H_i/H'_i, gG' \mapsto T_i(gG')$$

the Artin transfer from G to H_i , for $1 \le i \le m$, [17, (4), p. 470].

The family $\varkappa(G) = (\ker(T_i))_{1 \le i \le m}$ is called the *transfer kernel type*, TKT, of G, and the family $\tau(G) = (H_i/H'_i)_{1 \le i \le m}$ is called the *transfer target type*, TTT, of G.

In this article, we shall be concerned with 3-groups G of particular TKTs, resp. pTKTs (punctured), with d = 2, m = 4, specified at the beginning of each section. By the symbol \sim we indicate that some of the TKTs are equivalent, since they generate the same orbit under action of the symmetric group S_4 [17].

Definition 1.2. An infinite sequence of p-groups $(G_j)_{j\geq 0}$ is called a *periodic sequence* or *coclass family* if its members

- (1) share a common coclass $cc(G_i) = r \ge 1$,
- (2) are descendants of a common ancestor M_0 , which is the root of a coclass tree $\mathcal{T}_r(M_0)$,
- (3) share a common TKT $\varkappa(G_i)$,
- (4) share m-1 common components of the TTT $\tau(G_j)$, whereas the single remaining component depends on the nilpotency class,
- (5) share a common parametrized pc-presentation $G_j = \langle x_1, \ldots, x_d | \mathcal{R}_{c_j}(x_1, \ldots, x_d) \rangle$ having the nilpotency class $c_j = cl(G_j)$ as the only parameter.

Remark 1.1. The mainline of the coclass tree $\mathcal{T}_r(M_0)$ consists of one or more periodic sequences $(M_j)_{j\geq 0}$, whose parametrized pc-presentations approach the pro-*p* presentation of their projective limit $L = \lim_{j\geq 0} M_j$ when the class $c_j = \operatorname{cl}(M_j)$ tends to infinity.

In the sequel we characterize 3-groups by their identifier in the SmallGroups library [4] and their descendants of order bigger than 3^7 by the notation used in the ANUPQ package [14] of GAP [13] and MAGMA [15].

Date: March 19, 2014.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20D15, 20F12, 20F14.

Key words and phrases. power-commutator presentations, 3-groups of derived lengths 2 and 3, central series, lattice of normal subgroups, coclass trees.

Research supported by the Austrian Science Fund (FWF): P 26008-N25.

2. 3-GROUPS G WITH $G/G' \simeq (3,3)$

For coclass cc(G) = 1 and abelianization $G/G' \simeq (3,3)$ we need

- all three cases of TKTs in section a, that is,
 - a.1, $\varkappa = (0, 0, 0, 0)$, a.2, $\varkappa = (1, 0, 0, 0)$, and

a.3, $\varkappa = (2, 0, 0, 0) \sim (3, 0, 0, 0) \sim (4, 0, 0, 0).$

2.1. Periodic 3-groups on coclass tree $\mathcal{T}_1(\langle 9, 2 \rangle)$. As a familiar entrance, we begin by showing that certain 3-groups of class at least 5 on the coclass tree $\mathcal{T}_1(\langle 9, 2 \rangle)$ belong to 4 + 3 = 7 periodic coclass sequences with period length 2.

Theorem 2.1. For each integer $c \ge 5$, there are 4 metabelian descendants G of $\langle 9, 2 \rangle$, having nilpotency class cl(G) = c, coclass cc(G) = 1, and order $|G| = 3^{c+1}$, with two generators x, y and parametrized pc-presentation

$$G = \langle x, y, s_2, s_3, s_4, \dots, s_c |$$

$$s_2 = [y, x], \ s_j = [s_{j-1}, x] \text{ for } 3 \le j \le c,$$

$$s_j^3 = s_{j+2}^2 s_{j+3} \text{ for } 2 \le j \le c-3, \ s_{c-2}^3 = s_c^2,$$

$$R(x) = 1, \ R(y) = 1 \rangle,$$

where the relators R(x) and R(y) are given by

(1)
$$R(x) = \begin{cases} x^3 & \text{for } G \text{ of } TKT \text{ a.1 or a.3,} \\ x^3 s_c^{-1} & \text{for } G \text{ of } TKT \text{ a.2,} \end{cases}$$

(2)
$$R(y) = \begin{cases} y^3 s_3^{-2} s_4^{-1} & \text{for } G \text{ of } TKT \text{ a.1 or a.2,} \\ y^3 s_3^{-2} s_4^{-1} s_c^{-1} & \text{or} \\ y^3 s_3^{-2} s_4^{-1} s_c^{-2} & \text{for } G \text{ of } TKT \text{ a.3.} \end{cases}$$

For odd class $c \ge 5$ the 4 groups are pairwise non-isomorphic σ -groups. For even class $c \ge 6$, the pair of groups sharing the same TKT (a.3) is isomorphic, and thus only 3 groups are pairwise non-isomorphic, and only the mainline group with TKT a.1 is a σ -group.

Remark 2.1. The presentations in Theorem 2.1 are similar to but not identical with Blackburn's well-known presentations [5]. See also [17, § 2, pp. 469–470].

Remark 2.2. Pro-3 presentations for the projective limit L of the mainline of coclass tree $\mathcal{T}_1(\langle 9, 2 \rangle)$ are given in two different forms by Eick and Feichtenschlager [9, § 9.2, p. 11] resp. [12, App. A, pp. 90–91]:

(1) either for L as an extension of $\gamma_3(L) \simeq \mathbb{Z}_3^2$ by $L/\gamma_3(L)$,

$$\begin{array}{rcl} L & = & \langle \; x,y,s_2,t_1,t_2 \; \mid \; [y,x] = s_2, \; [s_2,x] = t_1, \; [t_1,x] = t_2, \; [t_2,x] = t_1^{-4}t_2^{-2}, \\ & x^3 = 1, \; y^3 = t_1^2t_2, \; s_2^3 = t_1^{-3}t_2^{-1} \; \rangle, \end{array}$$

(2) or for L as an extension of $\gamma_4(L) \simeq \mathbb{Z}_3^2$ by $L/\gamma_4(L)$,

$$L = \langle x, y, s_2, s_3, t_1, t_2 | [y, x] = s_2, [s_2, x] = s_3, [s_3, x] = t_2, [t_1, x] = t_2^3, [t_2, x] = t_1^{-2} t_2^{-2}, \\ x^3 = 1, y^3 = s_3^2 t_2, s_2^3 = t_1^{-1} t_2^{-1}, s_3^3 = t_1 \rangle.$$

 $\mathbf{2}$

For coclass $cc(G) \ge 2$ and abelianization $G/G' \simeq (3,3)$ we need

- all four cases of TKTs in section E, that is, E.6, $\varkappa = (1, 1, 2, 2)$, E.14, $\varkappa = (3, 1, 2, 2) \sim (4, 1, 2, 2)$, E.8, $\varkappa = (1, 1, 3, 4)$, and E.9, $\varkappa = (3, 1, 3, 4) \sim (4, 1, 3, 4)$,
- $\bullet\,$ both TKTs in section c, that is,
 - c.18, $\varkappa = (0, 1, 2, 2)$, and
 - c.21, $\varkappa = (0, 1, 3, 4),$
- TKT H.4, $\varkappa = (2, 1, 2, 2),$
- TKT G.16, $\varkappa = (2, 1, 3, 4)$.

2.2. Periodic 3-groups on coclass tree $\mathcal{T}_2(\langle 243,6\rangle)$. Now we show that certain 3-groups of class at least 5 on the coclass tree $\mathcal{T}_2(\langle 243,6\rangle)$ belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.2. For each integer $c \ge 5$, there are 6 metabelian descendants G of $\langle 243, 6 \rangle$, having nilpotency class cl(G) = c, coclass cc(G) = 2, and order $|G| = 3^{c+2}$, with two generators x, y and parametrized pc-presentation

$$\begin{array}{lll} G &=& \langle \ x, y, s_2, t_3, s_3, s_4, \dots, s_c \ &| \\ && s_2 = [y, x], \ t_3 = [s_2, y], \ s_j = [s_{j-1}, x] \ for \ 3 \le j \le c, \\ && s_j^3 = s_{j+2}^2 s_{j+3} \ for \ 2 \le j \le c-3, \ s_{c-2}^3 = s_c^2, \ t_3^3 = 1, \\ && R(x) = 1, \ R(y) = 1 \ \rangle, \end{array}$$

where the relators R(x) and R(y) are given by

is a σ -group.

(3)
$$R(x) = \begin{cases} x^3 & \text{for } G \text{ of } TKT \text{ c.18 or H.4,} \\ x^3 s_c^{-1} & \text{for } G \text{ of } TKT \text{ E.6 or E.14,} \end{cases}$$

(4)
$$R(y) = \begin{cases} y^3 s_3^{-2} s_4^{-1} & \text{for } G \text{ of } TKT \text{ c.18 or } \text{E.6}, \\ y^3 s_3^{-2} s_4^{-1} s_c^{-1} & \text{or} \\ y^3 s_3^{-2} s_4^{-1} s_c^{-2} & \text{for } G \text{ of } TKT \text{ H.4 or } \text{E.14}. \end{cases}$$

For odd class $c \ge 5$ the 6 groups are pairwise non-isomorphic σ -groups. For even class $c \ge 6$, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic, and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18

Proof. G is a metabelian 3-group with abelian commutator subgroup $G' = \langle s_2, t_3, s_3, s_4, \ldots, s_c \rangle$. Due to the nilpotency relation $[s_c, x] = 1$, G is of class cl(G) = c. Since t_3 is not contained in the subgroup $\langle s_3, s_4, \ldots, s_c \rangle$ and the centre of G is given by $\zeta_1(G) = \langle t_3, s_c \rangle$, the lower central series of G has a single bicyclic factor $\gamma_3 = \langle t_3, s_3, \gamma_4(G) \rangle$ and G is of coclass cc(G) = 2, and thus of order $|G| = 3^{c+2}$.

The four maximal subgroups of G are given by $H_1 = \langle y, G' \rangle$, $H_2 = \langle x, G' \rangle$, $H_3 = \langle xy, G' \rangle$, $H_4 = \langle xy^2, G' \rangle.$

For the investigation of the transfers

$$T_i: \ G/G' \to H_i/H_i', \ gG' \mapsto \begin{cases} g^3H_i' & \text{if } g \in G \setminus H_i, \\ g^{S_3(h)}H_i' & \text{if } g \in H_i, \end{cases}$$

where $S_3(h) = 1 + h + h^2 \in \mathbb{Z}[G]$ for some $h \in G \setminus H_i$, generators of the derived subgroups H'_i , $1 \le i \le 4$, must be determined. Since G' is a normal subgroup of index 3 in each maximal subgroup, we obtain $H'_i = [G', H_i] = (G')^{g_i - 1}$ when $H_i = \langle g_i, G' \rangle$, and some commutator calculus vields

Now we can calculate the transfer kernels. For this purpose we represent the elements $g \in G$ in the form $g \equiv x^j y^\ell \mod G'$ and solve the congruence $T_i(gG') \equiv 1 \mod H'_i$.

First we derive expressions for the transfer images of the generators x, y. Since $x, y \notin H_i$ and $s_4, s_c \in H'_i$ for i = 3, 4, we have $T_i(xG') \equiv x^3 \equiv 1 \mod H'_i$ and $T_i(yG') \equiv y^3 \equiv s_3^2 \mod H'_i$ for i = 3, 4.

Further, since $y \notin H_2$ and $s_3, s_4, s_c \in H'_2$, we have $T_2(yG') \equiv y^3 \equiv 1 \mod H'_2$, and since $x \notin H_1$, we have $T_1(xG') \equiv x^3 \mod H'_1$.

However, for the action of trace elements as symbolic exponents we need [17, eqn. (6), p. 486].

 $e \leq 2.$

Consequently, we obtain the following expressions for the transfer images:

$$T_1(x^j y^{\ell} G') \equiv \begin{cases} s_c^{e\ell} \mod H'_1 & \text{if } x^3 = 1, \ y^3 = s_3^2 s_4 s_c^e, \\ s_c^{j+e\ell} \mod H'_1 & \text{if } x^3 = s_c, \ y^3 = s_3^2 s_4 s_c^e, \end{cases}$$
$$T_2(x^j y^{\ell} G') \equiv t_3^{-j} \mod H'_2, \\T_i(x^j y^{\ell} G') \equiv s_3^{2\ell} \mod H'_i \text{ for } i \in \{3,4\}.$$

2.3. Periodic 3-groups on coclass tree $\mathcal{T}_2(\langle 243, 8 \rangle)$. Similarly to the previous section, we now show that certain 3-groups of class at least 6 on the coclass tree $\mathcal{T}_2(\langle 243, 8 \rangle)$ belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.3. For each integer $c \ge 6$, there are 6 metabelian descendants G of $\langle 243, 8 \rangle$, having nilpotency class cl(G) = c, coclass cc(G) = 2, and order $|G| = 3^{c+2}$, with two generators x, y and parametrized pc-presentation

$$G = \langle x, y, t_2, s_3, t_3, t_4, \dots, t_c |$$

$$t_2 = [y, x], \ s_3 = [t_2, x], \ t_j = [t_{j-1}, y] \ for \ 3 \le j \le c,$$

$$t_j^3 = t_{j+2}^2 t_{j+3} \ for \ 2 \le j \le c-3, \ t_{c-2}^3 = t_c^2, \ s_3^3 = 1,$$

$$R(y) = 1, \ R(x) = 1 \rangle,$$

where the relators R(y) and R(x) are given by

(5)
$$R(y) = \begin{cases} y^3 s_3^{-1} & \text{for } G \text{ of } TKT \text{ c.21 or } G.16, \\ y^3 s_3^{-1} t_c^{-1} & \text{for } G \text{ of } TKT \text{ E.8 or } E.9, \end{cases}$$

(6)
$$R(x) = \begin{cases} x^{3}t_{3}^{-1}t_{4}^{-2}t_{5}^{-1} & \text{for } G \text{ of } TKT \text{ c.21 or } \text{E.8}, \\ x^{3}t_{3}^{-1}t_{4}^{-2}t_{5}^{-1}t_{c}^{-1} & \text{or} \\ x^{3}t_{3}^{-1}t_{4}^{-2}t_{5}^{-1}t_{c}^{-2} & \text{for } G \text{ of } TKT \text{ G.16 or } \text{E.9}. \end{cases}$$

For odd class $c \ge 7$ the 6 groups are pairwise non-isomorphic σ -groups. For even class $c \ge 6$, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic, and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21 is a σ -group.

Remark 2.3. Eick, Leedham-Green, Newman, and O'Brien [11] have determined the projective limit $L = \lim_{j \ge 0} M_j$ of the metabelian mainline $(M_j)_{j \ge 0}$ of the coclass tree $\mathcal{T}_2(M_0)$ with root $M_0 = \langle 243, 6 \rangle$, resp. $\langle 243, 8 \rangle$. It is given by the pro-3 presentation

$$\begin{split} L = \langle t, a, z & | \quad a^3 = z^f, \ [t, t^a] = z, \ tt^a t^{a^2} = z^2, \\ z^3 = 1, \ [z, a] = 1, \ [z, t] = 1, \ \rangle, \end{split}$$

where f = 0, resp. f = 1. The centre of L is the cyclic group $\zeta_1(L) = \langle z \rangle$ of order 3.

The mainline vertices of $\mathcal{T}_2(M_0)$ are the σ -groups

$$\begin{array}{rcl} M_{2\ell} &\simeq& L/\langle t^{3^{\ell+2}} \rangle \\ & & \text{of order } 3^{2\ell+5} \text{ and odd class } 2\ell+3, \\ M_{2\ell+1} &\simeq& L/\langle t^{3^{\ell+2}}, t^{3^{\ell+1}}(t^a)^{-3^{\ell+1}} \rangle \\ & & \text{of order } 3^{2\ell+6} \text{ and even class } 2\ell+4, \end{array}$$

for $\ell \geq 0$.

Proof. G is a metabelian 3-group with abelian commutator subgroup $G' = \langle t_2, s_3, t_3, t_4, \ldots, t_c \rangle$. Due to the nilpotency relation $[t_c, x] = 1$, G is of class cl(G) = c. Since s_3 is not contained in the subgroup $\langle t_3, t_4, \ldots, t_c \rangle$ and the centre of G is given by $\zeta_1(G) = \langle s_3, t_c \rangle$, the lower central series of G has a single bicyclic factor $\gamma_3 = \langle s_3, t_3, \gamma_4(G) \rangle$ and G is of coclass cc(G) = 2, and thus of order $|G| = 3^{c+2}$.

The four maximal subgroups of G are given by $H_1 = \langle x, G' \rangle$, $H_2 = \langle y, G' \rangle$, $H_3 = \langle yx, G' \rangle$, $H_4 = \langle yx^2, G' \rangle$.

For the investigation of the transfers

$$T_i: \ G/G' \to H_i/H_i', \ gG' \mapsto \begin{cases} g^3H_i' & \text{if } g \in G \setminus H_i, \\ g^{S_3(h)}H_i' & \text{if } g \in H_i, \end{cases}$$

where $S_3(h) = 1 + h + h^2 \in \mathbb{Z}[G]$ for some $h \in G \setminus H_i$, generators of the derived subgroups H'_i , $1 \leq i \leq 4$, must be determined. Since G' is a normal subgroup of index 3 in each maximal subgroup, we obtain $H'_i = [G', H_i] = (G')^{g_i-1}$ when $H_i = \langle g_i, G' \rangle$, and some commutator calculus yields

$$\begin{array}{lll} H_1' &=& \langle s_3 \rangle, \\ H_2' &=& \langle t_3, t_4, \dots, t_c \rangle, \\ H_3' &=& \langle t_3 s_3, t_4, \dots, t_c \rangle, \\ H_4' &=& \langle t_3 s_3^2, t_4, \dots, t_c \rangle. \end{array}$$

Now we can calculate the transfer kernels. For this purpose we represent the elements $g \in G$ in the form $g \equiv y^j x^{\ell} \mod G'$ and solve the congruence $T_i(gG') \equiv 1 \mod H'_i$.

First we derive expressions for the transfer images of the generators x, y. Since $x, y \notin H_i$ and $t_4, t_5, t_c \in H'_i$ for i = 3, 4, we have $T_i(yG') \equiv y^3 \equiv s_3 \mod H'_i$ and $T_i(xG') \equiv x^3 \equiv t_3^2 \mod H'_i$ for i = 3, 4.

Further, since $x \notin H_2$ and $t_3, t_4, t_5, t_c \in H'_2$, we have $T_2(xG') \equiv x^3 \equiv 1 \mod H'_2$, and since $y \notin H_1$ and $s_3 \in H'_1$, we have $T_1(yG') \equiv y^3 \equiv t_c^{\varepsilon} \mod H'_1$ with suitable $0 \leq \varepsilon \leq 1$.

However, for the action of trace elements as symbolic exponents we need [17, eqn. (6), p. 486]. Since $y \in H_2$ and $t_4, t_5, t_c \in H'_2$, we have $T_2(y) \equiv y^{S_3(x)} \equiv y^3[y, x]^3[[y, x], x] \equiv s_3 t_c^{\varepsilon} \cdot t_2^3 s_3 \equiv s_3^2 t_4^2 t_5 t_c^{\varepsilon} \equiv s_3^2 \mod H'_2$.

Since $x \in H_1$ and since we can prove by induction that $s_3^3 s_4^3 s_5 = 1$, we have $T_1(x) \equiv x^{S_3(y)} \equiv x^3[x,y]^3[[x,y],y] \equiv t_3 t_4^2 t_5 t_c^e t_2^{-3} t_3^{-1} \equiv t_3 t_4^2 t_5 t_c^e t_4^{-2} t_5^{-1} t_3^{-1} \equiv t_c^e \mod H_1'$ for some exponent $0 \le e \le 2$. Consequently, we obtain the following expressions for the transfer images:

$$\begin{aligned} T_1(y^j x^{\ell} G') &\equiv \begin{cases} t_c^{e\ell} \mod H'_1 & \text{if } y^3 = s_3, \ x^3 = t_3 t_4^2 t_5 t_c^e, \\ t_c^{j+e\ell} \mod H'_1 & \text{if } y^3 = s_3 t_c, \ x^3 = t_3 t_4^2 t_5 t_c^e, \end{cases} \\ T_2(y^j x^{\ell} G') &\equiv s_3^{2j} \mod H'_2, \\ T_i(y^j x^{\ell} G') &\equiv s_3^{j} t_3^{\ell} \mod H'_i \text{ for } i \in \{3, 4\}. \end{aligned}$$

2.4. Periodic 3-groups on coclass tree $\mathcal{T}_3(\langle 729, 49 \rangle - \#2; 1)$. The following result shows that certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree $\mathcal{T}_3(\langle 729, 49 \rangle - \#2; 1)$, belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.4. For each integer $c \ge 6$, there are 6 descendants G of $\langle 729, 49 \rangle - \#2; 1$, having nilpotency class cl(G) = c, coclass cc(G) = 3, order $|G| = 3^{c+3}$, and derived length dl(G) = 3, with two generators x, y and parametrized pc-presentation

$$\begin{array}{lll} G &=& \langle \ x, y, s_2, t_3, s_3, s_4, \dots, s_c, u_5 \ | \\ & s_2 = [y, x], \ t_3 = [s_2, y], \ s_j = [s_{j-1}, x] \ for \ 3 \le j \le c, \\ & u_5 = [s_3, y] = [s_4, y], \ [s_3, s_2] = u_5^2, \ t_3^3 = u_5^2, \\ & s_2^3 = s_4^2 s_5 u_5, \ s_j^3 = s_{j+2}^2 s_{j+3} \ for \ 3 \le j \le c-3, \ s_{c-2}^3 = s_c^2, \\ & R(x) = 1, \ R(y) = 1 \ \rangle, \end{array}$$

where the relators R(x) and R(y) are given by equations (3) and (4).

For odd class $c \ge 7$ the 6 groups are pairwise non-isomorphic σ -groups. For even class $c \ge 6$, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic, and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18 is a σ -group.

2.5. Periodic 3-groups on coclass tree $\mathcal{T}_3(\langle 729, 54 \rangle - \#2; 3)$. The following result shows that certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree $\mathcal{T}_3(\langle 729, 54 \rangle - \#2; 3)$, belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.5. For each integer $c \ge 6$, there are 6 descendants G of $\langle 729, 54 \rangle - \#2; 3$, having nilpotency class cl(G) = c, coclass cc(G) = 3, order $|G| = 3^{c+3}$, and derived length dl(G) = 3, with two generators x, y and parametrized pc-presentation

$$\begin{array}{lll} G &=& \langle \; x,y,t_2,s_3,t_3,t_4,\ldots,t_c,u_5 \; \; | \\ & t_2 = [y,x], \; s_3 = [t_2,x], \; t_j = [t_{j-1},y] \; for \; 3 \leq j \leq c, \\ & u_5 = [t_3,x] = [t_4,x], \; [t_3,t_2] = u_5, \; s_3^3 = u_5^2, \\ & t_2^3 = t_4^2 t_5 u_5, \; t_j^3 = t_{j+2}^2 t_{j+3} \; for \; 3 \leq j \leq c-3, \; t_{c-2}^3 = t_c^2, \\ & R(y) = 1, \; R(x) = 1 \; \rangle, \end{array}$$

where the relators R(y) and R(x) are given by equations (5) and (6).

For odd class $c \geq 7$ the 6 groups are pairwise non-isomorphic σ -groups.

For even class $c \ge 6$, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic, and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21 is a σ -group.

3. 3-groups G with $G/G' \simeq (9,3)$

For coclass $cc(G) \ge 3$ and abelianization $G/G' \simeq (9,3)$ we need

- pTKT C.4, $\varkappa = (3, 1, 1; 3)$,
- two pTKTs in section D, D.5, κ = (2, 1, 1; 3), and D.10, κ = (4, 1, 1; 3),
- pTKT d.10, $\varkappa = (0, 1, 1; 3)$,
- pTKT B.2, $\varkappa = (1, 1, 1; 3)$.

3.1. Periodic 3-groups on coclass tree $\mathcal{T}_3(\langle 729, 13 \rangle)$. Similarly as in the previous sections, we show that certain 3-groups of class at least 8 on the coclass tree $\mathcal{T}_3(\langle 729, 13 \rangle)$ belong to 9+5=14 periodic coclass sequences with period length 2.

Theorem 3.1. For each integer $c \ge 8$, there are 9 metabelian descendants G of $\langle 729, 13 \rangle$, having nilpotency class cl(G) = c, coclass cc(G) = 3, and order $|G| = 3^{c+3}$, with two generators x, y and parametrized pc-presentation

$$\begin{array}{lll} G &=& \langle \ x,y,\tau,t_2,s_3,t_3,t_4,\ldots,t_c \ &| \\ & \tau = x^3, \ t_2 = [y,x], \ s_3 = [t_2,x], \ t_j = [t_{j-1},y] \ for \ 3 \le j \le c, \\ & t_j^3 = t_{j+2}^2 t_{j+3} \ for \ 2 \le j \le c-3, \ t_{c-2}^3 = t_c^2, \ s_3^3 = 1, \\ & [\tau,y] = t_4 t_5^2 t_6, \ R(y) = 1, \ R(\tau) = 1 \ \rangle, \end{array}$$

where the relators R(y) and $R(\tau)$ are given by

(7)
$$R(y) = \begin{cases} y^{3} & \text{for } G \text{ of } pTKT \text{ d.10 or } B.2(1) \text{ or } B.2(2), \\ y^{3}t_{c}^{-1} & \text{for } G \text{ of } pTKT \text{ C.4}(1) \text{ or } D.5(2) \text{ or } D.10(1), \\ y^{3}t_{c}^{-2} & \text{for } G \text{ of } pTKT \text{ C.4}(2) \text{ or } D.5(1) \text{ or } D.10(2), \end{cases}$$
(9)
$$R(y) = \begin{cases} \tau^{3}s_{3}^{-1}t_{5}^{-2}t_{6}^{-2}t_{7}^{-1} & \text{for } G \text{ of } pTKT \text{ d.10 or } D.10, \\ 3 - 1t_{5}^{-2}t_{5}^{-2}t_{7}^{-1} & \text{for } G \text{ of } pTKT \text{ d.10 or } D.10, \end{cases}$$

(8)
$$R(\tau) = \begin{cases} \tau^3 s_3^{-1} t_5^{-2} t_6^{-2} t_7^{-1} t_c^{-1} & \text{for } G \text{ of } p TKT \text{ B.2(1) } or \text{ C.4(1) } or \text{ D.5(1)}, \\ \tau^3 s_3^{-1} t_5^{-2} t_6^{-2} t_7^{-1} t_c^{-2} & \text{for } G \text{ of } p TKT \text{ B.2(2) } or \text{ C.4(2) } or \text{ D.5(2)}. \end{cases}$$

For odd class $c \ge 9$ the 9 groups are pairwise non-isomorphic σ -groups. For even class $c \ge 8$, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10) are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group with pTKT d.10 is a σ -group. 3.2. Periodic 3-groups on coclass tree $\mathcal{T}_4(\langle 2187, 168 \rangle - \#2; 7)$. The following result shows that certain 3-groups of class at least 8 on the entirely non-metabelian coclass tree $\mathcal{T}_4(\langle 2187, 168 \rangle - \#2; 7)$, belong to 9 + 5 = 14 periodic coclass sequences with period length 2.

Theorem 3.2. For each integer $c \ge 8$, there are 9 descendants G of $\langle 2187, 168 \rangle - \#2; 7$, having nilpotency class cl(G) = c, coclass cc(G) = 4, order $|G| = 3^{c+4}$, and derived length dl(G) = 3, with two generators x, y and parametrized pc-presentation

$$\begin{array}{lll} G &=& \langle \; x,y,\tau,t_2,s_3,t_3,t_4,\ldots,t_c,u_5 \; \; | \\ & \tau = x^3,\; t_2 = [y,x],\; s_3 = [t_2,x],\; t_j = [t_{j-1},y]\; for\; 3 \leq j \leq c, \\ & u_5 = [t_3,x] = [t_4,x],\; [\tau,t_2] = [t_3,t_2] = u_5,\; s_3^3 = u_5^2, \\ & t_2^3 = t_4^2 t_5 u_5,\; t_j^3 = t_{j+2}^2 t_{j+3}\; for\; 3 \leq j \leq c-3,\; t_{c-2}^3 = t_c^2, \\ & [\tau,y] = t_4 t_5^2 t_6,\; R(y) = 1,\; R(\tau) = 1 \; \rangle, \end{array}$$

where the relators R(y) and $R(\tau)$ are given by equations (7) and (8).

For odd class $c \ge 9$ the 9 groups are pairwise non-isomorphic σ -groups.

For even class $c \ge 8$, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10) are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group with pTKT d.10 is a σ -group.

References

- J. A. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17 (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320.
- [2] J. A. Ascione, On 3-groups of second maximal class (Ph.D. Thesis, Australian National University, Canberra, 1979).
- [3] J. A. Ascione, On 3-groups of second maximal class, Bull. Austral. Math. Soc. 21 (1980), 473-474.
- [4] H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
- [5] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
- [7] W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.), Handbook of Magma functions (Edition 2.19, Sydney, 2013).
- [8] M. du Sautoy, Counting p-groups and nilpotent groups, Inst. Hautes Études Sci. Publ. Math. 92 (2000) 63-112.
- B. Eick and D. Feichtenschlager, Infinite sequences of p-groups with fixed coclass (arXiv: 1006.0961 v1 [math.GR], 4 Jun 2010).
- [10] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass, Bull. London Math. Soc. 40 (2) (2008), 274–288.
- [11] B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O'Brien, On the classification of groups of primepower order by coclass: The 3-groups of coclass 2, to appear in Int. J. Algebra and Computation, 2013.
- [12] D. Feichtenschlager, Symbolic computation with infinite sequences of p-groups with fixed coclass (Dissertation, TU Braunschweig, 2010).
- [13] The GAP Group, GAP Groups, Algorithms, and Programming a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, 2008, (http://www.gap-system.org).
- [14] G. Gamble, W. Nickel, and E. A. O'Brien, ANU p-Quotient p-Quotient and p-Group Generation Algorithms, 2006, an accepted GAP 4 package, available also in MAGMA.
- [15] The MAGMA Group, MAGMA Computational Algebra System, Version 2.19-9, Sydney, 2013, (http://magma.maths.usyd.edu.au).
- [16] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471–505, DOI 10.1142/S179304211250025X.
- [17] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (2012), no. 3-4, 467-495, DOI 10.1007/s00605-010-0277-x.
- [18] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2013) no. 2, 401–456 (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011).
- [19] B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem (Inauguraldissertation, Universität zu Köln, 1989).
- [20] M. F. Newman, Groups of prime-power order, Groups Canberra 1989, Lecture Notes in Mathematics, vol. 1456, Springer, 1990, pp. 49–62.
- [21] M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), 131–169.
- [22] E. A. O'Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), 677–698.

NAGLERGASSE 53, 8010 GRAZ, AUSTRIA *E-mail address:* algebraic.number.theory@algebra.at *URL*: http://www.algebra.at