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DANIEL C. MAYER

Abstract. For certain infinite sequences of 3-groups G with derived length 2 ≤ dl(G) ≤ 3,

and either with G/G′ ' (3, 3), coclass cc(G) ≥ 1, or with G/G′ ' (9, 3), coclass cc(G) ≥ 3,
parametrized pc-presentations are given in dependence on the class c = cl(G).

1. Preliminaries

For the detailed description of p-groups G with abelianization G/G′ of type (p, p) or (p2, p),
we need two advanced invariants which coincide for any p-group G and for its metabelianization
G/G′′ [18, Thm. 1.1, p. 402].

Definition 1.1. Let G be a p-group of generator rank d(G) = d, put m = pd−1
p−1 , let H1, . . . ,Hm

be the maximal (normal) subgroups (of index p) in G, and denote by

Ti : G/G′ → Hi/H
′
i, gG

′ 7→ Ti(gG′)

the Artin transfer from G to Hi, for 1 ≤ i ≤ m, [17, (4), p. 470].
The family κ(G) = (ker(Ti))1≤i≤m is called the transfer kernel type, TKT, of G, and the family

τ(G) = (Hi/H
′
i)1≤i≤m is called the transfer target type, TTT, of G.

In this article, we shall be concerned with 3-groups G of particular TKTs, resp. pTKTs
(punctured), with d = 2, m = 4, specified at the beginning of each section. By the symbol
∼ we indicate that some of the TKTs are equivalent, since they generate the same orbit under
action of the symmetric group S4 [17].

Definition 1.2. An infinite sequence of p-groups (Gj)j≥0 is called a periodic sequence or coclass
family if its members

(1) share a common coclass cc(Gj) = r ≥ 1,
(2) are descendants of a common ancestor M0, which is the root of a coclass tree Tr(M0),
(3) share a common TKT κ(Gj),
(4) share m − 1 common components of the TTT τ(Gj), whereas the single remaining com-

ponent depends on the nilpotency class,
(5) share a common parametrized pc-presentation Gj = 〈x1, . . . , xd | Rcj (x1, . . . , xd)〉 having

the nilpotency class cj = cl(Gj) as the only parameter.

Remark 1.1. The mainline of the coclass tree Tr(M0) consists of one or more periodic sequences
(Mj)j≥0, whose parametrized pc-presentations approach the pro-p presentation of their projective
limit L = lim

←− j≥0Mj when the class cj = cl(Mj) tends to infinity.

In the sequel we characterize 3-groups by their identifer in the SmallGroups library [4] and their
descendants of order bigger than 37 by the notation used in the ANUPQ package [14] of GAP [13]
and MAGMA [15].
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2. 3-groups G with G/G′ ' (3, 3)

For coclass cc(G) = 1 and abelianization G/G′ ' (3, 3) we need
• all three cases of TKTs in section a, that is,

a.1, κ = (0, 0, 0, 0),
a.2, κ = (1, 0, 0, 0), and
a.3, κ = (2, 0, 0, 0) ∼ (3, 0, 0, 0) ∼ (4, 0, 0, 0).

2.1. Periodic 3-groups on coclass tree T1(〈9, 2〉). As a familiar entrance, we begin by showing
that certain 3-groups of class at least 5 on the coclass tree T1(〈9, 2〉) belong to 4 + 3 = 7 periodic
coclass sequences with period length 2.

Theorem 2.1. For each integer c ≥ 5, there are 4 metabelian descendants G of 〈9, 2〉, having
nilpotency class cl(G) = c, coclass cc(G) = 1, and order |G| = 3c+1, with two generators x, y and
parametrized pc-presentation

G = 〈 x, y, s2, s3, s4, . . . , sc |
s2 = [y, x], sj = [sj−1, x] for 3 ≤ j ≤ c,
s3j = s2j+2sj+3 for 2 ≤ j ≤ c− 3, s3c−2 = s2c ,

R(x) = 1, R(y) = 1 〉,
where the relators R(x) and R(y) are given by

R(x) =

{
x3 for G of TKT a.1 or a.3,
x3s−1

c for G of TKT a.2,
(1)

R(y) =


y3s−2

3 s−1
4 for G of TKT a.1 or a.2,

y3s−2
3 s−1

4 s−1
c or

y3s−2
3 s−1

4 s−2
c for G of TKT a.3.

(2)

For odd class c ≥ 5 the 4 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 6, the pair of groups sharing the same TKT (a.3) is isomorphic, and thus only
3 groups are pairwise non-isomorphic, and only the mainline group with TKT a.1 is a σ-group.

Remark 2.1. The presentations in Theorem 2.1 are similar to but not identical with Blackburn’s
well-known presentations [5]. See also [17, § 2, pp. 469–470].

Remark 2.2. Pro-3 presentations for the projective limit L of the mainline of coclass tree
T1(〈9, 2〉) are given in two different forms by Eick and Feichtenschlager [9, § 9.2, p. 11] resp.
[12, App. A, pp. 90–91]:

(1) either for L as an extension of γ3(L) ' Z2
3 by L/γ3(L),

L = 〈 x, y, s2, t1, t2 | [y, x] = s2, [s2, x] = t1, [t1, x] = t2, [t2, x] = t−4
1 t−2

2 ,

x3 = 1, y3 = t21t2, s
3
2 = t−3

1 t−1
2 〉,

(2) or for L as an extension of γ4(L) ' Z2
3 by L/γ4(L),

L = 〈 x, y, s2, s3, t1, t2 | [y, x] = s2, [s2, x] = s3, [s3, x] = t2, [t1, x] = t32, [t2, x] = t−2
1 t−2

2 ,

x3 = 1, y3 = s23t2, s
3
2 = t−1

1 t−1
2 , s33 = t1 〉.
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For coclass cc(G) ≥ 2 and abelianization G/G′ ' (3, 3) we need
• all four cases of TKTs in section E, that is,

E.6, κ = (1, 1, 2, 2),
E.14, κ = (3, 1, 2, 2) ∼ (4, 1, 2, 2),
E.8, κ = (1, 1, 3, 4), and
E.9, κ = (3, 1, 3, 4) ∼ (4, 1, 3, 4),

• both TKTs in section c, that is,
c.18, κ = (0, 1, 2, 2), and
c.21, κ = (0, 1, 3, 4),

• TKT H.4, κ = (2, 1, 2, 2),
• TKT G.16, κ = (2, 1, 3, 4).

2.2. Periodic 3-groups on coclass tree T2(〈243, 6〉). Now we show that certain 3-groups of
class at least 5 on the coclass tree T2(〈243, 6〉) belong to 6 + 4 = 10 periodic coclass sequences
with period length 2.

Theorem 2.2. For each integer c ≥ 5, there are 6 metabelian descendants G of 〈243, 6〉, having
nilpotency class cl(G) = c, coclass cc(G) = 2, and order |G| = 3c+2, with two generators x, y and
parametrized pc-presentation

G = 〈 x, y, s2, t3, s3, s4, . . . , sc |
s2 = [y, x], t3 = [s2, y], sj = [sj−1, x] for 3 ≤ j ≤ c,
s3j = s2j+2sj+3 for 2 ≤ j ≤ c− 3, s3c−2 = s2c , t

3
3 = 1,

R(x) = 1, R(y) = 1 〉,
where the relators R(x) and R(y) are given by

R(x) =

{
x3 for G of TKT c.18 or H.4,
x3s−1

c for G of TKT E.6 or E.14,
(3)

R(y) =


y3s−2

3 s−1
4 for G of TKT c.18 or E.6,

y3s−2
3 s−1

4 s−1
c or

y3s−2
3 s−1

4 s−2
c for G of TKT H.4 or E.14.

(4)

For odd class c ≥ 5 the 6 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 6, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18
is a σ-group.
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Proof. G is a metabelian 3-group with abelian commutator subgroup G′ = 〈s2, t3, s3, s4, . . . , sc〉.
Due to the nilpotency relation [sc, x] = 1, G is of class cl(G) = c. Since t3 is not contained in the
subgroup 〈s3, s4, . . . , sc〉 and the centre of G is given by ζ1(G) = 〈t3, sc〉, the lower central series
of G has a single bicyclic factor γ3 = 〈t3, s3, γ4(G)〉 and G is of coclass cc(G) = 2, and thus of
order |G| = 3c+2.

The four maximal subgroups of G are given by H1 = 〈y,G′〉, H2 = 〈x,G′〉, H3 = 〈xy,G′〉,
H4 = 〈xy2, G′〉.

For the investigation of the transfers

Ti : G/G′ → Hi/H
′
i, gG

′ 7→

{
g3H ′i if g ∈ G \Hi,

gS3(h)H ′i if g ∈ Hi,

where S3(h) = 1 + h + h2 ∈ Z[G] for some h ∈ G \ Hi, generators of the derived subgroups
H ′i, 1 ≤ i ≤ 4, must be determined. Since G′ is a normal subgroup of index 3 in each maximal
subgroup, we obtain H ′i = [G′, Hi] = (G′)gi−1 when Hi = 〈gi, G

′〉, and some commutator calculus
yields

H ′1 = 〈t3〉,
H ′2 = 〈s3, s4, . . . , sc〉,
H ′3 = 〈s3t3, s4, . . . , sc〉,
H ′4 = 〈s3t23, s4, . . . , sc〉.

Now we can calculate the transfer kernels. For this purpose we represent the elements g ∈ G
in the form g ≡ xjy` mod G′ and solve the congruence Ti(gG′) ≡ 1 mod H ′i.

First we derive expressions for the transfer images of the generators x, y. Since x, y /∈ Hi and
s4, sc ∈ H ′i for i = 3, 4, we have Ti(xG′) ≡ x3 ≡ 1 mod H ′i and Ti(yG′) ≡ y3 ≡ s23 mod H ′i for
i = 3, 4.

Further, since y /∈ H2 and s3, s4, sc ∈ H ′2, we have T2(yG′) ≡ y3 ≡ 1 mod H ′2, and since
x /∈ H1, we have T1(xG′) ≡ x3 mod H ′1.

However, for the action of trace elements as symbolic exponents we need [17, eqn. (6), p. 486].
Since x ∈ H2 and sc ∈ H ′2, we have T2(x) ≡ xS3(y) ≡ x3[x, y]3[[x, y], y] ≡ 1 · s−3

2 [s−1
2 , y] ≡

s−2
4 s−1

5 [y, s−1
2 ]−1 ≡ [y, s2]s

−1
2 ≡ t−1

3 mod H ′2.
Since y ∈ H1 and since we can prove by induction that s33s

3
4s5 = 1, we have T1(y) ≡ yS3(x) ≡

y3[y, x]3[[y, x], x] ≡ s23s4s
e
cs

3
2s3 ≡ s23s4s

e
cs

2
4s5s3 ≡ s33s

3
4s5s

e
c ≡ se

c mod H ′1 for some exponent 0 ≤
e ≤ 2.

Consequently, we obtain the following expressions for the transfer images:

T1(xjy`G′) ≡

{
se`

c mod H ′1 if x3 = 1, y3 = s23s4s
e
c,

sj+e`
c mod H ′1 if x3 = sc, y

3 = s23s4s
e
c,

T2(xjy`G′) ≡ t−j
3 mod H ′2,

Ti(xjy`G′) ≡ s2`
3 mod H ′i for i ∈ {3, 4}.

�
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2.3. Periodic 3-groups on coclass tree T2(〈243, 8〉). Similarly to the previous section, we now
show that certain 3-groups of class at least 6 on the coclass tree T2(〈243, 8〉) belong to 6 + 4 = 10
periodic coclass sequences with period length 2.

Theorem 2.3. For each integer c ≥ 6, there are 6 metabelian descendants G of 〈243, 8〉, having
nilpotency class cl(G) = c, coclass cc(G) = 2, and order |G| = 3c+2, with two generators x, y and
parametrized pc-presentation

G = 〈 x, y, t2, s3, t3, t4, . . . , tc |
t2 = [y, x], s3 = [t2, x], tj = [tj−1, y] for 3 ≤ j ≤ c,
t3j = t2j+2tj+3 for 2 ≤ j ≤ c− 3, t3c−2 = t2c , s

3
3 = 1,

R(y) = 1, R(x) = 1 〉,
where the relators R(y) and R(x) are given by

R(y) =

{
y3s−1

3 for G of TKT c.21 or G.16,
y3s−1

3 t−1
c for G of TKT E.8 or E.9,

(5)

R(x) =


x3t−1

3 t−2
4 t−1

5 for G of TKT c.21 or E.8,
x3t−1

3 t−2
4 t−1

5 t−1
c or

x3t−1
3 t−2

4 t−1
5 t−2

c for G of TKT G.16 or E.9.
(6)

For odd class c ≥ 7 the 6 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 6, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21
is a σ-group.

Remark 2.3. Eick, Leedham-Green, Newman, and O’Brien [11] have determined the projective
limit L = lim

←− j≥0Mj of the metabelian mainline (Mj)j≥0 of the coclass tree T2(M0) with root

M0 = 〈243, 6〉, resp. 〈243, 8〉. It is given by the pro-3 presentation

L = 〈 t, a, z | a3 = zf , [t, ta] = z, ttata
2

= z2,

z3 = 1, [z, a] = 1, [z, t] = 1, 〉,
where f = 0, resp. f = 1. The centre of L is the cyclic group ζ1(L) = 〈z〉 of order 3.

The mainline vertices of T2(M0) are the σ-groups

M2` ' L/〈t3
`+2
〉

of order 32`+5 and odd class 2`+ 3,

M2`+1 ' L/〈t3
`+2
, t3

`+1
(ta)−3`+1

〉
of order 32`+6 and even class 2`+ 4,

for ` ≥ 0.
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Proof. G is a metabelian 3-group with abelian commutator subgroup G′ = 〈t2, s3, t3, t4, . . . , tc〉.
Due to the nilpotency relation [tc, x] = 1, G is of class cl(G) = c. Since s3 is not contained in the
subgroup 〈t3, t4, . . . , tc〉 and the centre of G is given by ζ1(G) = 〈s3, tc〉, the lower central series of
G has a single bicyclic factor γ3 = 〈s3, t3, γ4(G)〉 and G is of coclass cc(G) = 2, and thus of order
|G| = 3c+2.

The four maximal subgroups of G are given by H1 = 〈x,G′〉, H2 = 〈y,G′〉, H3 = 〈yx,G′〉,
H4 = 〈yx2, G′〉.

For the investigation of the transfers

Ti : G/G′ → Hi/H
′
i, gG

′ 7→

{
g3H ′i if g ∈ G \Hi,

gS3(h)H ′i if g ∈ Hi,

where S3(h) = 1 + h + h2 ∈ Z[G] for some h ∈ G \ Hi, generators of the derived subgroups
H ′i, 1 ≤ i ≤ 4, must be determined. Since G′ is a normal subgroup of index 3 in each maximal
subgroup, we obtain H ′i = [G′, Hi] = (G′)gi−1 when Hi = 〈gi, G

′〉, and some commutator calculus
yields

H ′1 = 〈s3〉,
H ′2 = 〈t3, t4, . . . , tc〉,
H ′3 = 〈t3s3, t4, . . . , tc〉,
H ′4 = 〈t3s23, t4, . . . , tc〉.

Now we can calculate the transfer kernels. For this purpose we represent the elements g ∈ G
in the form g ≡ yjx` mod G′ and solve the congruence Ti(gG′) ≡ 1 mod H ′i.

First we derive expressions for the transfer images of the generators x, y. Since x, y /∈ Hi and
t4, t5, tc ∈ H ′i for i = 3, 4, we have Ti(yG′) ≡ y3 ≡ s3 mod H ′i and Ti(xG′) ≡ x3 ≡ t23 mod H ′i
for i = 3, 4.

Further, since x /∈ H2 and t3, t4, t5, tc ∈ H ′2, we have T2(xG′) ≡ x3 ≡ 1 mod H ′2, and since
y /∈ H1 and s3 ∈ H ′1, we have T1(yG′) ≡ y3 ≡ tεc mod H ′1 with suitable 0 ≤ ε ≤ 1.

However, for the action of trace elements as symbolic exponents we need [17, eqn. (6), p. 486].
Since y ∈ H2 and t4, t5, tc ∈ H ′2, we have T2(y) ≡ yS3(x) ≡ y3[y, x]3[[y, x], x] ≡ s3t

ε
c · t32s3 ≡

s23t
2
4t5t

ε
c ≡ s23 mod H ′2.

Since x ∈ H1 and since we can prove by induction that s33s
3
4s5 = 1, we have T1(x) ≡ xS3(y) ≡

x3[x, y]3[[x, y], y] ≡ t3t24t5tect−3
2 t−1

3 ≡ t3t24t5tect−2
4 t−1

5 t−1
3 ≡ tec mod H ′1 for some exponent 0 ≤ e ≤ 2.

Consequently, we obtain the following expressions for the transfer images:

T1(yjx`G′) ≡

{
te`
c mod H ′1 if y3 = s3, x

3 = t3t
2
4t5t

e
c,

tj+e`
c mod H ′1 if y3 = s3tc, x

3 = t3t
2
4t5t

e
c,

T2(yjx`G′) ≡ s2j
3 mod H ′2,

Ti(yjx`G′) ≡ sj
3t

`
3 mod H ′i for i ∈ {3, 4}.

�
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2.4. Periodic 3-groups on coclass tree T3(〈729, 49〉 −#2; 1). The following result shows that
certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree T3(〈729, 49〉−#2; 1),
belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.4. For each integer c ≥ 6, there are 6 descendants G of 〈729, 49〉 − #2; 1, having
nilpotency class cl(G) = c, coclass cc(G) = 3, order |G| = 3c+3, and derived length dl(G) = 3,
with two generators x, y and parametrized pc-presentation

G = 〈 x, y, s2, t3, s3, s4, . . . , sc, u5 |
s2 = [y, x], t3 = [s2, y], sj = [sj−1, x] for 3 ≤ j ≤ c,
u5 = [s3, y] = [s4, y], [s3, s2] = u2

5, t
3
3 = u2

5,

s32 = s24s5u5, s
3
j = s2j+2sj+3 for 3 ≤ j ≤ c− 3, s3c−2 = s2c ,

R(x) = 1, R(y) = 1 〉,
where the relators R(x) and R(y) are given by equations (3) and (4).
For odd class c ≥ 7 the 6 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 6, the two pairs of groups sharing the same TKT (H.4 and E.14) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.18
is a σ-group.

2.5. Periodic 3-groups on coclass tree T3(〈729, 54〉 −#2; 3). The following result shows that
certain 3-groups of class at least 6 on the entirely non-metabelian coclass tree T3(〈729, 54〉−#2; 3),
belong to 6 + 4 = 10 periodic coclass sequences with period length 2.

Theorem 2.5. For each integer c ≥ 6, there are 6 descendants G of 〈729, 54〉 − #2; 3, having
nilpotency class cl(G) = c, coclass cc(G) = 3, order |G| = 3c+3, and derived length dl(G) = 3,
with two generators x, y and parametrized pc-presentation

G = 〈 x, y, t2, s3, t3, t4, . . . , tc, u5 |
t2 = [y, x], s3 = [t2, x], tj = [tj−1, y] for 3 ≤ j ≤ c,
u5 = [t3, x] = [t4, x], [t3, t2] = u5, s

3
3 = u2

5,

t32 = t24t5u5, t
3
j = t2j+2tj+3 for 3 ≤ j ≤ c− 3, t3c−2 = t2c ,

R(y) = 1, R(x) = 1 〉,
where the relators R(y) and R(x) are given by equations (5) and (6).
For odd class c ≥ 7 the 6 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 6, the two pairs of groups sharing the same TKT (G.16 and E.9) are isomorphic,
and thus only 4 groups are pairwise non-isomorphic, and only the mainline group with TKT c.21
is a σ-group.
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3. 3-groups G with G/G′ ' (9, 3)

For coclass cc(G) ≥ 3 and abelianization G/G′ ' (9, 3) we need
• pTKT C.4, κ = (3, 1, 1; 3),
• two pTKTs in section D,

D.5, κ = (2, 1, 1; 3), and
D.10, κ = (4, 1, 1; 3),

• pTKT d.10, κ = (0, 1, 1; 3),
• pTKT B.2, κ = (1, 1, 1; 3).

3.1. Periodic 3-groups on coclass tree T3(〈729, 13〉). Similarly as in the previous sections, we
show that certain 3-groups of class at least 8 on the coclass tree T3(〈729, 13〉) belong to 9 + 5 = 14
periodic coclass sequences with period length 2.

Theorem 3.1. For each integer c ≥ 8, there are 9 metabelian descendants G of 〈729, 13〉, having
nilpotency class cl(G) = c, coclass cc(G) = 3, and order |G| = 3c+3, with two generators x, y and
parametrized pc-presentation

G = 〈 x, y, τ, t2, s3, t3, t4, . . . , tc |
τ = x3, t2 = [y, x], s3 = [t2, x], tj = [tj−1, y] for 3 ≤ j ≤ c,
t3j = t2j+2tj+3 for 2 ≤ j ≤ c− 3, t3c−2 = t2c , s

3
3 = 1,

[τ, y] = t4t
2
5t6, R(y) = 1, R(τ) = 1 〉,

where the relators R(y) and R(τ) are given by

R(y) =


y3 for G of pTKT d.10 or B.2(1) or B.2(2),
y3t−1

c for G of pTKT C.4(1) or D.5(2) or D.10(1),
y3t−2

c for G of pTKT C.4(2) or D.5(1) or D.10(2),
(7)

R(τ) =


τ3s−1

3 t−2
5 t−2

6 t−1
7 for G of pTKT d.10 or D.10,

τ3s−1
3 t−2

5 t−2
6 t−1

7 t−1
c for G of pTKT B.2(1) or C.4(1) or D.5(1),

τ3s−1
3 t−2

5 t−2
6 t−1

7 t−2
c for G of pTKT B.2(2) or C.4(2) or D.5(2).

(8)

For odd class c ≥ 9 the 9 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 8, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10)
are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group
with pTKT d.10 is a σ-group.
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3.2. Periodic 3-groups on coclass tree T4(〈2187, 168〉−#2; 7). The following result shows that
certain 3-groups of class at least 8 on the entirely non-metabelian coclass tree T4(〈2187, 168〉 −
#2; 7), belong to 9 + 5 = 14 periodic coclass sequences with period length 2.

Theorem 3.2. For each integer c ≥ 8, there are 9 descendants G of 〈2187, 168〉 −#2; 7, having
nilpotency class cl(G) = c, coclass cc(G) = 4, order |G| = 3c+4, and derived length dl(G) = 3,
with two generators x, y and parametrized pc-presentation

G = 〈 x, y, τ, t2, s3, t3, t4, . . . , tc, u5 |
τ = x3, t2 = [y, x], s3 = [t2, x], tj = [tj−1, y] for 3 ≤ j ≤ c,
u5 = [t3, x] = [t4, x], [τ, t2] = [t3, t2] = u5, s

3
3 = u2

5,

t32 = t24t5u5, t
3
j = t2j+2tj+3 for 3 ≤ j ≤ c− 3, t3c−2 = t2c ,

[τ, y] = t4t
2
5t6, R(y) = 1, R(τ) = 1 〉,

where the relators R(y) and R(τ) are given by equations (7) and (8).
For odd class c ≥ 9 the 9 groups are pairwise non-isomorphic σ-groups.
For even class c ≥ 8, the four pairs of groups sharing the same pTKT (B.2, C.4, D.5 and D.10)
are isomorphic, and thus only 5 groups are pairwise non-isomorphic, and only the mainline group
with pTKT d.10 is a σ-group.
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[20] M. F. Newman, Groups of prime-power order, Groups — Canberra 1989, Lecture Notes in Mathematics, vol.

1456, Springer, 1990, pp. 49–62.
[21] M. F. Newman and E. A. O’Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999),

131–169.

[22] E. A. O’Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), 677–698.

Naglergasse 53, 8010 Graz, Austria

E-mail address: algebraic.number.theory@algebra.at

URL: http://www.algebra.at


