1. Commutators Generating the Descending Central Series.PROPOSITION 1.1.Assumptions: Let m,n be rational integers, such that 3 <= m <= n and let G be a 2-stage metabelian 3-group in ZEF(m,n) with generators x,y. Claims: 1. G2 = < [y,x],G3 > , i. e., G2/G3 = (3) is cyclic 2. G2 = < [y,x]g | g in G > = [y,x]G , i. e., G2 is a cyclic G/G'-module 3. For all i >= 2, we have the following implication: if Gi = < g1,...,gr,Gi+1 > with r >= 0 and g1,...,gr in Gi - Gi+1, then r <= 2i-1 and Gi+1 = < [gj,x],[gj,y],Gi+2 | 1 <= j <= r > 4. In particular, if 4 <= m <= n and if we use the notation s2 = [y,x], s3 = [s2,x] = s2x-1, t3 = [s2,y] = s2y-1, then G2 = < s2,G3 > implies that G3 = < s3,t3,G4 > 5. For 4 <= m <= n, there exist generators x,y of G, such that G3 = < x3,y3,G4 > . |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Groups of Maximal Class.THEOREM 2.1.Assumptions: Let m be a rational integer, such that m >= 3, and let G be a 2-stage metabelian 3-group of maximal class in ZEF(m,m) with generators s,s1, where we assume s in G - C2 and s1 in C2 - G' in the case of m > 3, i. e., G' < C2 < G. Finally, with d(i) = (s - 1)i let si = [s1,s]d(i-2) in Gi for i >= 2. Claims: 1. The generators satisfy the following relations: a) relations without s,s1: si = 1 for i >= m, [si,sj] = 1 for i,j >= 2, si3si+13si+2 = 1 for i >= 2 b) relations including s1 but without s: [si,s1] = 1 for i >= 3, [s2,s1] = sm-1c for some -1 <= c <= 1, s13s23s3 = sm-1b for some -1 <= b <= 1 c) relations including s: [si,s] = si+1 for i >= 1, s3 = sm-1a for some -1 <= a <= 1. These relations are abbreviated by writing G = G(m)(a,b,c). 2. The structure of the members of the descending central series is given by Gi = < si > * < si+1 > = A(3,m-i) for all 2 <= i <= m-1, in particular Gm-1 = < sm-1 > = (3).
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. Groups of Non-Maximal Class.THEOREM 3.1.Assumptions: Let m,n be rational integers, such that 4 <= m < n <= 2m - 3, and put e = n - m + 2 >= 3. Let G be a 2-stage metabelian 3-group of non-maximal class in ZEF(m,n) with generators x,y, such that G3 = < x3,y3,G4 >, where we assume x in G - Cs and y in Cs - G' in the case of s < m - 1, i. e., G in ZEF 2(m,n). Additionally, with v2 = [y,x], d(x,i) = (x - 1)i, and d(y,i) = (y - 1)i let vi = [y,x]d(x,i-2), wi = [y,x]d(y,i-2), for i >= 3, si = (y3)d(x,i-3), ti = (x3)d(y,i-3), for i >= 3, Si = < sj | j >= i >, Ti = < tj | j >= i >, for i >= 3, and denote by D the intersection of S4 with T4. Claims: 1. Gi = < si, ti, Gi+1 > = Si*Ti for i >= 3, and thus Gi/Gi+1 is at most of 3-rank 2. 2. Si = < si > * < si+1 > ~ A(3,m-i) and #Si = 3m-i for all 3 <= i <= m. 3. If G belongs to ZEF a(m,n), then we have a) Ti = < ti > * < ti+1 > ~ A(3,e+1-i) and #Ti = 3e+1-i for all 3 <= i <= e+1, b) the intersection of Si with Ti is trivial (=1), c) and Gi is the direct product of Si and Ti: Gi = < si > * < si+1 > * < ti > * < ti+1 > ~A(3,m-i)*A(3,e+1-i) for 3 <= i <= e and ~A(3,m-i) for e+1 <= i <= m. 4. However, if G belongs to ZEF b(m,n), then a) Ti = < ti > * < ti+1 > ~ A(3,e+2-i) and #Ti = 3e+2-i for all 3 <= i <= e+2, b) and the intersection of Si with Ti equals Gm-1 = < sm-1 > = < te+1 > for all 3 <= i <= e+1. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4. Transfers ("Verlagerungen").This will be the topic of our next article. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
<| Navigation Center <| |
<| Back to Algebra <| |