3.A. All known sextic S3 examples:
In the following diagrams,
we give all 2-stage metabelian 3-groups
G = G(K*1|k0)
that occured for sextic S3 fields K
over the quadratic cyclotomic field k0 = Q((-3)1/2)
having 2-prime conductors f = 32*q with a prime q = -1(mod 9)
[3].
We denote by
G = G1 > G2 > ... > Gi > ... > Gm = 1
the descending central series of class m - 1
of G with Gi+1 = [Gi,G].
In particular, G2 = [G,G] is the commutator subgroup G' of G.
The relative 3-genus field K* = (K|k0)* of K over k0 is the compositum
K* = k*k~ of k = k0(q1/3) and k~ = k0(31/3),
the cubic Kummer extensions of k0 with the two primeconductors q and 9 dividing f.
Hence K* is a bicyclic bicubic relative extension of k0
that contains yet two other cubic Kummer extensions
K = k0((3q)1/3) and K~ = k0((9q)1/3)
of k0 with conductor f.
We gratefully acknowledge that Karim Belabas has computed
the structure of G2 = Syl3C(K*) with the aid of PARI.
|
Group of maximal class
(e = 2)
G = G(5)(alpha,beta,gamma)
in ZEF 2a(5,5)
with (alpha,beta,gamma) = (0,0,0),
of class 4 and of order 35 = 243
|
| | | | K*1 = K~1 | | | | |
| | | | | | | | | |
| | | | F4 | | | | |
| | | | | | | | | |
| | | | K1 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | k0 | | | | |
|
| | | | G5 = 1 | | | | |
| | | | | | | | | |
| | | | G4 = (3) | | | | |
| | | | | | | | | |
| | | | G3 = (3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (32,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 153 = 32*17
3-class numbers of K and K~:
(9,81)
principal factorization types of K and K~:
(BETA,GAMMA)
[3].
|
|
Group of maximal class
(e = 2)
G = G(4)(alpha,beta,gamma)
in ZEF 2a(4,4)
with (alpha,beta,gamma) = (1,1,0),
of class 3 and of order 34 = 81
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | K1 = K~1 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | k0 | | | | |
|
| | | | G4 = 1 | | | | |
| | | | | | | | | |
| | | | G3 = (3) | | | | |
| | | | | | | | | |
| | | | G2 = (3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 801 = 32*89
3-class numbers of K and K~:
(9,9)
principal factorization types of K and K~:
(BETA,BETA)
[3].
|
|
Group of lower than second maximal class
(e = 4)
G = G(6,8)((alpha,beta,gamma,delta),rho)
in ZEF(6,8)
of class 5 and of order 38 = 6561
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F5 | | | | |
| | | | || | | | | |
| | | | K1 = K~1 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | k0 | | | | |
|
| | | | G6 = 1 | | | | |
| | | | | | | | | |
| | | | G5 = (3) | | | | |
| | | | || | | | | |
| | | | G4 = (3,3,3) | | | | |
| | | | || | | | | |
| | | | G3 = (32,3,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (32,32,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 2421 = 32*269
3-class numbers of K and K~:
(81,81)
principal factorization types of K and K~:
(BETA,BETA)
[3].
|
|
Group of lower than second maximal class
(e = 4)
G = G(7,9)((alpha,beta,gamma,delta),rho)
in ZEF2(7,9)
of class 6 and of order 39 = 19683
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F6 | | | | |
| | | | | | | | | |
| | | | K~1 | | | | |
| | | | || | | | | |
| | | | K1 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | k0 | | | | |
|
| | | | G7 = 1 | | | | |
| | | | | | | | | |
| | | | G6 = (3) | | | | |
| | | | | | | | | |
| | | | G5 = (3,3) | | | | |
| | | | || | | | | |
| | | | G4 = (32,3,3) | | | | |
| | | | || | | | | |
| | | | G3 = (32,32,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (33,32,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 7443 = 32*827
3-class numbers of K and K~:
(81,729)
principal factorization types of K and K~:
(BETA,GAMMA)
[3].
|
|
Group of lower than second maximal class
(e = 4)
G = G(9,11)((alpha,beta,gamma,delta),rho)
in ZEF2(9,11)
of class 8 and of order 311 = 177147
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F8 | | | | |
| | | | | | | | | |
| | | | K~1 | | | | |
| | | | | | | | | |
| | | | F6 | | | | |
| | | | | | | | | |
| | | | F5 | | | | |
| | | | || | | | | |
| | | | K1 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | k0 | | | | |
|
| | | | G9 = 1 | | | | |
| | | | | | | | | |
| | | | G8 = (3) | | | | |
| | | | | | | | | |
| | | | G7 = (3,3) | | | | |
| | | | | | | | | |
| | | | G6 = (32,3) | | | | |
| | | | | | | | | |
| | | | G5 = (32,32) | | | | |
| | | | || | | | | |
| | | | G4 = (33,32,3) | | | | |
| | | | || | | | | |
| | | | G3 = (33,33,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (34,33,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 9873 = 32*1097
3-class numbers of K and K~:
(81,6561)
principal factorization types of K and K~:
(BETA,GAMMA)
[3].
|
|
References:
[1] Brigitte Nebelung,
Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation, Köln, 1989
[2] Aïssa Derhem,
Retour sur la thèse de Moulay Chrif Ismaïli,
Casablanca, 2003
[3] Daniel C. Mayer,
Class Numbers and Principal Factorization Types of Multiplets
of Pure Cubic Fields Q( R1/3 ) with R < 106,
Univ. Graz, Computer Centre, 2003
|
|