2.A. All known cyclic cubic examples:
In the following diagrams,
we give all 2-stage metabelian 3-groups
G = G(K*1|Q)
that occured for cyclic cubic fields K
with 2-prime conductors f < 105
[3].
We denote by
G = G1 > G2 > ... > Gi > ... > Gm = 1
the descending central series of class m - 1
of G with Gi+1 = [Gi,G].
In particular, G2 = [G,G] is the commutator subgroup G' of G.
The absolute 3-genus field K* is the compositum
K* = k*k~ of k and k~,
the cyclic cubic fields with the two primeconductors dividing f.
Hence K* is a bicyclic bicubic field
that contains yet another cyclic cubic field K~ with conductor f.
|
Group of maximal class
(e = 2)
G = (3,3)
in ZEF(2,2)
of class 1 and of order 32 = 9
|
| | | | K*1 = K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G2 = 1 | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 63 = 32*7
3-class numbers of K and K~:
(3,3)
|
|
Group of maximal class
(e = 2)
G = G(3)(alpha,beta,gamma)
in ZEF 1a(3,3)
with (alpha,beta,gamma) = (0,0,0),
of class 2 and of order 33 = 27
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G3 = 1 | | | | |
| | | | | | | | | |
| | | | G2 = (3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 657 = 32*73
3-class numbers of K and K~:
(9,9)
|
|
Group of maximal class
(e = 2)
G = G(4)(alpha,beta,gamma)
in ZEF 2a(4,4)
with (alpha,beta,gamma) = (0,1,0),
of class 3 and of order 34 = 81
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G4 = 1 | | | | |
| | | | | | | | | |
| | | | G3 = (3) | | | | |
| | | | | | | | | |
| | | | G2 = (3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 2439 = 32*271
3-class numbers of K and K~:
(9,9)
|
|
Group of second maximal class
(e = 3)
G = G(4,5)((alpha,beta,gamma,delta),rho)
in ZEF 1a(4,5)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = 0,
of class 3 and of order 35 = 243
|
| | | | K*1 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G4 = 1 | | | | |
| | | | || | | | | |
| | | | G3 = (3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (3,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 4711 ("Eau de Cologne") = 7*673
3-class numbers of K and K~:
(27,27)
|
|
Group of second maximal class
(e = 3)
G = G(5,6)((alpha,beta,gamma,delta),rho)
in ZEF 1b(5,6) resp. ZEF 2a(5,6)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = 1
resp. rho = 0,
of class 4 and of order 36 = 729
with rho != beta - 1 resp. rho = 0
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F4 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G5 = 1 | | | | |
| | | | | | | | | |
| | | | G4 = (3) | | | | |
| | | | || | | | | |
| | | | G3 = (3,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (32,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 5383 = 7*769 resp.
f = 41977 = 13*3229
3-class numbers of K and K~:
(27,27) resp. (81,27)
|
|
Group of second maximal class
(e = 3)
G = G(5,6)((alpha,beta,gamma,delta),rho)
in ZEF 1b(5,6)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = -1,
of class 4 and of order 36 = 729
with rho = beta - 1 != 0
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F4 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G5 = 1 | | | | |
| | | | | | | | | |
| | | | G4 = (3) | | | | |
| | | | || | | | | |
| | | | G3 = (3,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (3,3,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 21763 = 7*3109
3-class numbers of K and K~:
(27,27)
|
Remark:
Here, the difference to f = 5383 is that we have
G2 = (3,3,3,3) and rho = -1
instead of
G2 = (32,3,3) and rho = +1,
which implies different structures of
Syl3C(K*) = G(K*1|K*) = G2.
|
Group of second maximal class
(e = 3)
G = G(6,7)((alpha,beta,gamma,delta),rho)
in ZEF 2b(6,7)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = +-1,
of class 5 and of order 37 = 2187
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F5 | | | | |
| | | | | | | | | |
| | | | F4 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G6 = 1 | | | | |
| | | | | | | | | |
| | | | G5 = (3) | | | | |
| | | | | | | | | |
| | | | G4 = (3,3) | | | | |
| | | | || | | | | |
| | | | G3 = (32,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (32,32,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 68857 = 37*1861
3-class numbers of K and K~:
(81,27)
|
|
Group of second maximal class
(e = 3)
G = G(7,8)((alpha,beta,gamma,delta),rho)
in ZEF 2b(7,8)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = +-1,
of class 6 and of order 38 = 6561
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F6 | | | | |
| | | | | | | | | |
| | | | F5 | | | | |
| | | | | | | | | |
| | | | F4 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G7 = 1 | | | | |
| | | | | | | | | |
| | | | G6 = (3) | | | | |
| | | | | | | | | |
| | | | G5 = (3,3) | | | | |
| | | | | | | | | |
| | | | G4 = (32,3) | | | | |
| | | | || | | | | |
| | | | G3 = (32,32,3) | | | | |
| | | | | | | | | |
| | | | G2 = (33,32,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 36667 = 37*991
3-class numbers of K and K~:
(243,27)
|
|
Group of lower than second maximal class
(e = 4)
G = G(6,8)((alpha,beta,gamma,delta),rho)
in ZEF 2a(6,8)
with (alpha,beta,gamma,delta) = (0,0,0,0), rho = 0,
of class 5 and of order 38 = 6561
|
| | | | K*1 | | | | |
| | | | | | | | | |
| | | | F5 | | | | |
| | | | || | | | | |
| | | | F4 | | | | |
| | | | || | | | | |
| | | | F3 | | | | |
| | | | | | | | | |
| | | | K* | | | | |
| / | | / | | \ | | \ | |
k | | K | | | | K~ | | k~ |
| \ | | \ | | / | | / | |
| | | | Q | | | | |
|
| | | | G6 = 1 | | | | |
| | | | | | | | | |
| | | | G5 = (3) | | | | |
| | | | || | | | | |
| | | | G4 = (3,3,3) | | | | |
| | | | || | | | | |
| | | | G3 = (32,3,3,3) | | | | |
| | | | | | | | | |
| | | | G2 = (32,32,3,3) | | | | |
| / | | / | | \ | | \ | |
h | | H | | | | H~ | | h~ |
| \ | | \ | | / | | / | |
| | | | G | | | | |
|
Minimal occurrence:
f = 42127 = 103*409
3-class numbers of K and K~:
(243,81)
|
|
References:
[1] Brigitte Nebelung,
Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation, Köln, 1989
[2] Aïssa Derhem,
Sur les corps cubiques cycliques
de conducteur divisible par deux premiers,
Casablanca, 2002
[3] Daniel C. Mayer,
Class Numbers and Principal Factorizations of Families
of Cyclic Cubic Fields with Discriminant d < 1010,
Univ. Graz, Computer Centre, 2002
|
|