1.B. All known imaginary quadratic examples:In the following diagrams, we give the 2-stage metabelian 3-groups G = G(K2|K) that occur for all imaginary quadratic fields K = Q(d1/2) with discriminant -50000 < d < 0 and 3-class group of type (3,3). These recent computations of 2003 for 42 new cases in the range -50000 < d < -30000 [6] extend our own results for 22 fields with -30000 < d < -20000 of 1989 [5] and the 13 examples with -20000 < d < 0 of Heider and Schmithals in 1982 [2] . As a supplement, we give some singular cases with groups of exceptionally high order in the range -200000 < d < -50000. We denote by G = G1 >= G2 > ... > Gi > ... > Gm = 1 the descending central series of class m - 1 of G with Gi+1 = [Gi,G]. In particular, G2 = [G,G] is the commutator subgroup G' of G. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type D36 of 77 fields (47 %)14 (39 %) of Type D.5 and 22 (61 %) of Type D.10
Remarks: (1,1,2,3) and (1,2,1,2) are the only two principalization types where the associated Galois group G = G(K2|K) is uniquely determined. Exactly the same diagram illustrates the descending central series G = G1 >= G2 >= ... for the imaginary quadratic fields K with discriminants d = -8751, -19651, -21224, -22711, -24904, -26139, -28031, -28759 of principalization type D.10, (1,1,2,3) [2,5] , resp. d = -19187, -20276, -20568, -24340, -26760 of principalization type D.5, (1,2,1,2) [2,5] . The Hilbert 3-class field tower K = K0 <= K1 <= K2 <= ... of all these fields terminates after 2 steps with K2, i. e., 3 does not divide the class number of K2. This was shown by Scholz and Taussky in [1] and, with a different proof, by Brink and Gold in [3] . Results discovered 2003/04/19 - 22 and 2003/05/09: According to [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -31639, -31999, -32968, -34507, -35367, -41583, -41671, -43307 of principalization type D.5, (1,2,1,2) and d = -34088, -36807, -40299, -40692, -41015, -42423, -43192, -44004, -45835, -46587, -48052, -49128, -49812 of principalization type D.10, (1,1,2,3). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type E18 of 77 fields (23 %)3 (17 %) of Type E.6, 2 (11 %) of Type E.8, 9 (50 %) of Type E.9, and 4 (22 %) of Type E.14
Remarks: Here, the principalization type (1,1,3,2) does not determine the associated Galois group G = G(K2|K) uniquely. However, Scholz and Taussky [1] provide additional information for d = -9748 mentioning that a = 4 in the associated symbolic order Xa = (Xa,XY,Y2,3+3X+3X2) whence G' = G2 = Z[X,Y]/Xa = (32,32,3), and this property determines G uniquely, up to the sign of gamma. The Hilbert 3-class field tower K = K0 <= K1 <= K2 <= ... of the field K = Q((-9748)1/2) terminates after 2 steps with K2, i. e., 3 does not divide the class number of K2. That is the only claim by Scholz and Taussky in [1] and not a statement for all fields with associated symbolic order Xa. Heider and Schmithals erroneously remark in [2] that Scholz and Taussky proved G4 = 1 for the fields K with associated symbolic order Xa, whereas they really have G4 = (3,3). This led to a misinterpretation by Brink and Gold in [3] , where they construct a 3-stage metabelian 3-group that could possibly be the Galois group G(M|K) of an unramified cyclic cubic extension M of K2 when K has the associated symbolic order Xa. But no explicit example is known up to now for a 3-class field tower of height greater than 2. Results discovered 2003/01/14 - 18: According to recent computations of the structure of Syl3C(K1) = G(K2|K1) = G2 as (9,9,3) by Karim Belabas with the aid of PARI, exactly the same diagram illustrates the descending central series G = G1 >= G2 >= ... for the imaginary quadratic fields K with discriminants d = -22395, -22443, -27640 of principalization type E.9, (1,1,3,2) ~ (1,2,1,3) [5] , with (alpha,beta,gamma,delta) = (0,0,+-1,1), rho = 0, resp. d = -15544, -18555, -23683 of principalization type E.6, (1,1,2,2) [2,5] , with (alpha,beta,gamma,delta) = (1,-1,1,1), rho = 0, resp. d = -16627 of principalization type E.14, (2,3,1,1) [2,5] , with (alpha,beta,gamma,delta) = (0,-1,+-1,1), rho = 0, which are all designated by E in [1] . Results discovered 2003/03/23 and 2003/05/24: According to [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -31271, -34867, -37988, -39736, -42619, -42859, -43847, -45887, -48472, -48667. More detailed, according to [6] , we finally have d = -37988, -39736, -45887, -48472, -48667 of principalization type E.9, (1,1,3,2) ~ (1,2,1,3), with (alpha,beta,gamma,delta) = (0,0,+-1,1), rho = 0, d = -31271, -42859, -43847 of principalization type E.14, (2,3,1,1), with (alpha,beta,gamma,delta) = (0,-1,+-1,1), rho = 0, and d = -34867, -42619 of the newly discovered principalization type E.8, (1,2,3,1), the unique one with 3 fixed points (A,A,A,B) and with (alpha,beta,gamma,delta) = (1,0,-1,1), rho = 0. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type H13 of 77 fields (17 %)
Remarks: Again, the principalization type (2,1,1,1) does not determine the associated Galois group G = G(K2|K) uniquely. Results discovered 2003/01/14 and 2003/02/17: However, according to recent computations of the structure of Syl3C(K1) = G(K2|K1) = G2 as (9,3,3) by Karim Belabas with the aid of PARI and Claus Fieker with the aid of MAGMA, at least delta = 1, the class 4, and the order 729 of G are determined uniquely. Exactly the same diagram illustrates the descending central series G = G1 >= G2 >= ... for the imaginary quadratic fields K with discriminants d = -6583, -23428, -25447, -27355, -27991 of the same principalization type H.4, (2,1,1,1) [2,5] , designated by H in [1] . Results discovered 2003/04/22 and 2003/05/09: According to [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -36276, -37219, -37540, -39819, -41063, and: d = -43827, -46551. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type G.192 of 77 fields (3 %)
Remarks: As above, the principalization type (2,1,4,3) does not determine the associated Galois group G = G(K2|K) uniquely. Result discovered 2003/01/14: But according to the recent computation of the structure of Syl3C(K1) = G(K2|K1) = G2 as (3,3,3,3) by Karim Belabas with the aid of PARI, at least beta = 0, delta = 1, rho = -1, the class 4, and the order 729 of G are determined uniquely. Result discovered 2003/05/10: According to [6] , we now have another occurrence of this rare case: d = -49924. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type F2 of 77 fields (3 %)1 (50 %) of Type F.11, 1 (50 %) of Type F.12
Remarks: Again, the principalization type (1,3,2,1) does not determine the associated Galois group G = G(K2|K) uniquely. Result discovered 2003/02/13: However, according to a top recent computation of the structure of Syl3C(K1) = G(K2|K1) = G2 as (9,9,9,3) by Claus Fieker with the aid of MAGMA, at least gamma = 0, delta = 0, rho = 0, the class 5, and the order 19683 of G are determined uniquely. Results discovered 2003/03/23, 2003/05/27 - 31, and 2003/06/10: According to [6] and computations of Karim Belabas with the aid of PARI, we now have other occurrences of this rare case: d = -31908, -135587 of the newly discovered principalization type F.12, (2,1,3,1) ~ (3,2,1,1). According to the supplements section [7] of [6] , we finally have other occurrences of this rare case: d = -67480, -104627 of the newly discovered principalization type F.13, (2,1,1,3), and d = -124363 of the newly discovered principalization type F.7, (2,1,1,2). Results discovered 2003/09/16: According to the supplements section [7] of [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -160403, -184132, -189959 of type F.12, (2,1,3,1) ~ (3,2,1,1) and d = -167064 of type F.13, (2,1,1,3). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type G.16 and a Variant of Type H4 of 77 fields (5 %) ... Type G.162 of 77 fields (3 %) ... Variant of Type H.4
Remarks: As above, the principalization type (1,2,4,3) does not determine the associated Galois group G = G(K2|K) uniquely. Results discovered 2003/02/17: However, according to a top recent computation of the structure of Syl3C(K1) = G(K2|K1) = G2 as (27,9,3) by Claus Fieker with the aid of MAGMA, at least beta = 0, delta = 1, the class 6, and the order 6561 of G are determined uniquely. Exactly the same diagram illustrates the descending central series G = G1 >= G2 >= ... for the imaginary quadratic fields K with discriminants d = -24884, -28279 of the same principalization type G.16, (1,2,4,3) ~ (2,1,3,4) [5] , with (alpha,beta,gamma,delta) = (1,0,0,1), rho = 0 or (alpha,beta,gamma,delta) = (?,0,?,1), rho = +-1, designated by G in [1] , resp. d = -21668 of principalization type H.4.V1, (2,1,1,1) [5] , with (alpha,beta,gamma,delta) = (1,-1,-1,1), rho = 0 or (alpha,beta,gamma,delta) = (?,-1,?,1), rho = +-1, designated by H in [1] . Results discovered 2003/03/23: According to [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -34027 of principalization type H.4.V1, (2,1,1,1) and d = -35539 of principalization type G.16, (1,2,4,3) ~ (2,1,3,4). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Variant of Type G.19
Remarks: As above, the principalization type (2,1,4,3) does not determine the associated Galois group G = G(K2|K) uniquely. Result discovered 2003/05/29: However, according to a top recent computation of the structure of Syl3C(K1) = G(K2|K1) = G2 as (27,9,9,3) by Karim Belabas with the aid of PARI, at least delta = 0, the class 6, and the order 59049 of G are determined uniquely. Result discovered 2003/09/16: According to the supplements section [7] of [6] and a computation of Karim Belabas with the aid of PARI, we now have a further occurrence of this case: d = -156452. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Variant of Type G.16 and another Variant of Type H
Remarks: As above, the principalization type (1,2,4,3) does not determine the associated Galois group G = G(K2|K) uniquely. Result discovered 2003/06/10: However, according to a top recent computation of the structure of Syl3C(K1) = G(K2|K1) = G2 as (9,9,9,9) by Karim Belabas with the aid of PARI, at least delta = 0, rho = -1, the class 6, and the order 59049 of G are determined uniquely. Results discovered 2003/09/16 and 2004/01/06: According to the supplements section [7] of [6] and computations of Karim Belabas with the aid of PARI, we now have further occurrences of this case: d = -185747 of type G.16.V, (1,2,4,3), and d = -186483 of type H.4.V2, (2,1,1,1). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Variant of Type F.13
Remarks: As above, the principalization type (2,1,1,3) does not determine the associated Galois group G = G(K2|K) uniquely. Result discovered 2003/08/10: However, according to an investigation of the transfers ("Verlagerungen") to the 4 maximal subgroups M1,...,M4 of G, at least delta = 0, rho = 0, the class 7, and the order 177147 of G are determined uniquely. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
<| Navigation Center <| |
<| Back to Algebra <| |