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Abstract.
For an algebraic number field K with 3-class group Cl3(K) of type (3, 3) or (9, 3), the structure

of the 3-class groups Cl3(Ni) of the four unramified cyclic cubic extension fields Ni, 1 ≤ i ≤ 4, of K
is calculated with the aid of presentations for the metabelian Galois group G2

3(K) = Gal(F2
3(K)|K)

of the second Hilbert 3-class field F2
3(K) of K. In the case of a quadratic base field K = Q(

√
D)

it is shown that the structure of the 3-class groups of the four S3-fields N1, . . . , N4 determines the
type of principalization of the 3-class group of K in N1, . . . , N4. This provides an alternative to
the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily
automatizable and executes very quickly, is implemented in PARI/GP and applied to all 4 596,
resp. 1 146, quadratic fields with discriminant −106 < D < 107 and 3-class group of type (3, 3),
resp. (9, 3), to obtain extensive statistics of their principalization types and the distribution of
their second 3-class groups G2

3(K) on the coclass graphs G(3, r), 1 ≤ r ≤ 6, in the sense of Eick,
Leedham-Green, and Newman.
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Introduction

The principal ideal theorem, which has been conjectured by Hilbert in 1898, states that
each ideal of a number field K becomes principal when it is extended to the Hilbert
class field F1(K) of K, that is the maximal abelian unramified extension field of K.
Inspired by the Artin-Furtwängler proof of the principal ideal theorem, Scholz and Taussky
investigated the principalization in intermediate fields K < N < F1

3(K) between a base
field K with 3-class group of type (3, 3) or (9, 3) and its Hilbert 3-class field F1

3(K). They
developed an algorithm for computing the principalization of K in its four unramified
cyclic cubic extension fields N1, . . . , N4 for the case of a complex quadratic base field K.
This algorithm is probabilistic, since it decides whether an ideal a of K becomes principal
in Ni, for some 1 ≤ i ≤ 4, by testing local cubic residue characters of a principal ideal
cube (α) = a3, associated with the ideal a, and of a fundamental unit εi of the non-
Galois cubic subfield Li of the complex S3-field Ni with respect to a series of rational test
primes (p`)`≥1 and terminating when a critical test prime occurs. An upper bound for
the minimal critical test prime p`0 cannot be given effectively. It can only be estimated
by means of Chebotarëv’s density theorem, thus causing uncertainty.

An entirely different approach to the principalization problem will be presented in this
lecture. It is based on a purely group theoretical connection between the structure of
the abelianizations Mi/γ2(Mi) of the four maximal normal subgroups Mi of an arbitrary
metabelian 3-group G with G/γ2(G) of type (3, 3) or (9, 3) and the kernels ker(Ti) of the
transfers Ti : G/γ2(G) −→ Mi/γ2(Mi), 1 ≤ i ≤ 4. By the Artin reciprocity law of class
field theory, a corresponding number theoretical connection is established between the
structure of the 3-class groups Cl3(Ni) of the four unramified cyclic cubic extension fields
Ni of an arbitrary algebraic number field K with 3-class group Cl3(K) of type (3, 3) or
(9, 3) and the principalization kernels ker(jNi|K) of the class extension homomorphisms
jNi|K : Cl3(K) −→ Cl3(Ni), 1 ≤ i ≤ 4, applying the group theoretical statements to the
second 3-class group G2

3(K) = Gal(F2
3(K)|K) of K, that is the Galois group of the second

Hilbert 3-class field F2
3(K) = F1

3(F1
3(K)) of K.
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1. Computational Performance of the
Algorithm

The history of determining principalization types of quadratic
fields is shown in the following two tables 1 and 2.

Table 1. History of investigating quadratic fields of type (3, 3)

History complex real

authors year range number range number

Scholz, Taussky 1934 −10 000 < D 2

Heider, Schmithals 1982 −20 000 < D 13 D < 1 · 105 5

Brink 1984 −96 000 < D 66

Mayer 1989 −30 000 < D 35

Mayer 1991 D < 2 · 105 16

Mayer 2010 −106 < D 2 020 D < 107 2 576

Table 2. History of investigating quadratic fields of type (9, 3)

History complex real

authors year range number range number

Scholz, Taussky 1934 −10 000 < D 2

Heider, Schmithals 1982 −20 000 < D 7

Mayer 1989 −30 000 < D 9

Mayer 2011 −106 < D 875 D < 107 271
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2. Theoretical Foundations of the Algorithm

2.1. Little and big two-stage towers of 3-class fields.
K an algebraic number field,
Cl3(K) its 3-class group of type (3, 3) or (9, 3),

N1, . . . , N4 the four unramified cyclic cubic extensions of K,
0 ≤ ε ≤ 4 the counter #{1 ≤ i ≤ 4 | rank3(Cl3(Ni)) ≥ 3},
Ñ4 =

∏4
i=1 Ni the Frattini extension of K,

F1
3(K) the first Hilbert 3-class field of K,

F1
3(Ni) the first Hilbert 3-class field of Ni, 1 ≤ i ≤ 4,

F2
3(K) the second Hilbert 3-class field of K.

Definition 2.1. For 1 ≤ i ≤ 4,
the Γi = Gal(F1

3(Ni)|K) denote the Galois groups of the
four little two-stage towers of K, K < F1

3(K) ≤ F1
3(Ni),

G = Gal(F2
3(K)|K) denotes the Galois group of the

big two-stage tower of K, K < F1
3(K) ≤ F2

3(K).
G = G2

3(K) is called the second 3-class group of K.
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Further notation.
γj(G), j ≥ 1, the members of the lower central series of G,
χj(G), j ≥ 2, the two-step centralizers of γj(G)/γj+2(G),
Ti : G/G′ →Mi/M

′
i the transfer from G to the

maximal subgroup Mi, 1 ≤ i ≤ 4,
τ = (str(Mi/M

′
i))1≤i≤4 the transfer target type (TTT) of G,

where Mi/M
′
i ' Cl3(Ni),

κ = (ker(Ti))1≤i≤4 the transfer kernel type (TKT) of G,
briefly κ = (κ(i)))1≤i≤4, where ker(Ti) = M̃κ(i)/G

′.
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2.2. Nearly homocyclic 3-class groups of 3-rank two.

Definition 2.2. For an integer n ≥ 2, denote by
A(3, n) the nearly homocyclic abelian 3-group of order 3n,
i.e., the abelian group of type (3q+r, 3q),
where n = 2q + r with integers q ≥ 1 and 0 ≤ r < 2.
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2.2.1. Second 3-class groups G of coclass. cc(G) = 1

Figure 1. Root C3 × C3 and branches B(j), 2 ≤ j ≤ 7, on the coclass graph G(3, 1)
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Proof: N.Blackburn, 1958, [Bl] On a special class of p-groups.

Legend:
number in angles: GAP identifier,
big contour square: abelian group,
big full circle: metabelian group containing an abelian maximal subgroup,
small full circle: metabelian group without abelian maximal subgroups.
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Theorem 2.1. (Transfer target type, TTT, for G ∈ G(3, 1))
The structure of the 3-class groups Cl3(Ni), 1 ≤ i ≤ 4,
for cc(G) = 1, |G| = 3m, cl(G) = m− 1, m ≥ 3,
is given by

Cl3(N1) '

{
A(3,m− 1), if [χ2(G), γ2(G)] = 1, m ≥ 5,

A(3,m− 2), if [χ2(G), γ2(G)] = γm−1(G), m ≥ 6,

Cl3(Ni) ' A(3, 2) for 2 ≤ i ≤ 4, if m ≥ 4.

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.3.1.

Remark 2.1. Our Thm.2.1 covers all stem groups in Φ9, Φ35,
Φ36, and in higher isoclinism families.
It remains to investigate two groups in Φ2, four groups in Φ3,
and three groups in Φ10.
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2.2.2. Second 3-class groups G, cc(G) ≥ 2, G/G′ ' (3, 3)

Figure 2. Sporadic groups and roots of coclass trees on the coclass graph G(3, 2)
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Proof: B.Nebelung, 1989, [Ne] Klassifikation metabelscher 3-Gruppen.

Legend:
number in angles: GAP identifier,
big contour square: abelian group,
big full circle: metabelian group containing an abelian maximal subgroup,
big contour circle: metabelian group with centre of type (3, 3),
small contour circle: metabelian group with centre of type (3),
small contour square: non-metabelian group.
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Theorem 2.2. (Partial TTT (τ1(G), τ2(G)) for cc(G) ≥ 2)
The structure of the 3-class groups Cl3(Ni), 1 ≤ i ≤ 4,
for cc(G) ≥ 2, |G| = 3n, cl(G) = m− 1, G/G′ ' (3, 3), and
invariant e = n−m+ 2 ≥ 3, where 4 ≤ m < n ≤ 2m− 3,
is given by

Cl3(N1) '

{
A(3,m− 1), if [χs(G), γe(G)] = 1, m ≥ 5 ,

A(3,m− 2), if [χs(G), γe(G)] = γm−1(G), m ≥ 6 ,

Cl3(N2) ' A(3, e) for e ≥ 4 ,

Cl3(Ni) ' A(3, 3) for 3 ≤ i ≤ 4, if Γi 6' G4
0(1, 0) ' Syl3A9 .

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.3.2.

Remark 2.2. Our Thm.2.2 covers Cl3(Ni), 1 ≤ i ≤ 2, for all
stem groups in Φ23 and in higher isoclinism families.
It remains to investigate seven groups in Φ6, three groups in
Φ40, three groups in Φ41, four groups in Φ42, and two groups
in Φ43 completely,
Cl3(N2), for cc(G) = 2,
and Cl3(Ni), 3 ≤ i ≤ 4, for cc(G) ≥ 2.
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2.3. Searching for 3-class groups of 3-rank three.

2.3.1. Second 3-class groups G of coclass cc(G) = 1.

Theorem 2.3. (TTT of stem groups G in Φ2,Φ3,Φ10)
The structure of the 3-class groups Cl3(Ni), 1 ≤ i ≤ 4,
for cc(G) = 1, |G| = 3m, 3 ≤ cl(G) + 1 = m ≤ 5,
ist given by

Cl3(N1) '


A(3, 2), if m = 3,

A(3, 3), if m = 4, G 6' G4
0(1, 0) ' Syl3A9,

C3 × C3 × C3, if m = 4, G ' G4
0(1, 0) ' Syl3A9,

A(3, 3), if k = 1, m = 5,

Cl3(Ni) '

{
A(3, 2), if G ' G3

0(0, 0),

C9, if G ' G3
0(0, 1),

for 2 ≤ i ≤ 4, if m = 3,

where Gal(F2
3(K)|N1) = 〈y, γ2(G)〉 with y3 = 1, for m = 3.

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.4.1.



12

Corollary 2.3.1. (TTT τ (G) of stem groups G in Φ2,Φ3,Φ10)
The following table gives the structure of the 3-class groups
Cl3(Ni), 1 ≤ i ≤ 4, for the 3-groups G ∈ G(3, 1) of small
nilpotency class 1 ≤ cl(G) = m − 1 ≤ 4 in dependence on
the principalisation or transfer kernel type, TKT, κ.
ε counts 3-class groups of type (3, 3, 3).

m k TKT κ Cl3(F
1
3(K)) Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε

2 0 a.1 (0000) 1 (3) (3) (3) (3) 0

3 0 a.1 (0000) (3) (3, 3) (3, 3) (3, 3) (3, 3) 0

3 0 A.1 (1111) (3) (3, 3) (9) (9) (9) 0

4 0 a.1 (0000) (3, 3) (9, 3) (3, 3) (3, 3) (3, 3) 0

4 0 a.2 (1000) (3, 3) (9, 3) (3, 3) (3, 3) (3, 3) 0

4 0 a.3 (2000) (3, 3) (9, 3) (3, 3) (3, 3) (3, 3) 0

4 0 a.3∗ (2000) (3, 3) (3, 3, 3) (3, 3) (3, 3) (3, 3) 1

5 1 a.1 (0000) (9, 3) (9, 3) (3, 3) (3, 3) (3, 3) 0

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Cor.4.1.1.

Example 2.1. The smallest discriminant with TKT a.3∗, where
ε = 1, is D = 142 097.
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2.3.2. Second 3-class groups G, cc(G) = 2, G/G′ ' (3, 3).

Theorem 2.4. (TTT τ (G) of stem groups G in Φ6)
If |G| = 35, cl(G) = 3, G/G′ ' (3, 3), i.e.,
G is one of the 7 top vertices on G(3, 2) with bicyclic centre,
then the structure of the 3-class groups of F1

3(K) and N1, . . . , N4

is given by

TKT κ Cl3(F1
3(K)) Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε

D.10 (2241) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

D.5 (4224) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) (9, 3) 2

G.19 (2143) (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

H.4 (4443) (3, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

b.10 (0043) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

c.18 (0313) (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

c.21 (0231) (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

in dependence on the transfer kernel type, TKT (princi-
palisation type), κ of K.
Here, ε denotes the number of 3-class groups Cl3(Ni) of
type (3, 3, 3).

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.4.2.

Example 2.2. The first discriminant with TKT D.10, where
ε = 1, is D = −4 027.
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Theorem 2.5. (TTT of stem groups G in Φ40,Φ41,Φ42,Φ43)
If |G| = 36, cl(G) = 4, G/G′ ' (3, 3),
and [χs(G), γe(G)] = γm−1(G), i.e.,
G is one of the 12 vertices of level 2 on coclass graph G(3, 2)
with cyclic centre,
then the structure of the 3-class groups of F1

3(K) and N1, . . . , N4

is given by

TKT κ ρ Cl3(F1
3(K)) Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε

G.19 (2143) 1 (3, 3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

H.4 (4443) 1 (9, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

b.10 (0043) −1 (3, 3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

b.10 (0043) 1 (9, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

in dependence on the TKT κ of K and on the relational
exponent ρ of G.
Again, ε denotes the number of 3-class groups Cl3(Ni) of
type (3, 3, 3).

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.4.3.

Example 2.3. The first discriminant with TKT H.4, where
ε = 3, is D = −3 896.
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Theorem 2.6. (ε as a tree invariant)
All metabelian groups G on the coclass tree T (〈729, 40〉),
resp. T (〈243, 6〉), T (〈243, 8〉), of coclass graph G(3, 2) are
characterized by the value ε = 2, resp. ε = 1, ε = 0.

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Cor.4.4.1.
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2.3.3. Second 3-class groups G, cc(G) ≥ 3, G/G′ ' (3, 3).

Theorem 2.7. (TTT τ (G) for groups G with cc(G) ≥ 3)
If |G| = 3n, n ≥ 7, G/G′ ' (3, 3), cc(G) ≥ 3, m ≤ n − 2,
e ≥ 4, then Cl3(N1), Cl3(N2) are nearly homocyclic and
Cl3(N3), Cl3(N4) are of type (3, 3, 3), independently from
the transfer kernel type κ. In particular, ε = 2.

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.4.5.
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2.3.4. Second 3-class groups G, cc(G) = 2, G/G′ ' (9, 3)

Figure 3. Sporadic groups and roots of coclass trees on the coclass graph G(3, 2)
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Proof: J.A.Ascione, 1979, [As] On 3-groups of second maximal class.

Legend:
number in angles: GAP identifier,
big contour square: abelian group,
big full circle: metabelian group with centre of type (3, 3),
big contour circle: metabelian group with centre of type (9),
small contour circle: metabelian group with centre of type (3).
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Theorem 2.8. (TTT τ (G) of branch 1 groups G in Φ3)
If |G| = 35, cl(G) = 3, G/G′ ' (9, 3), i.e.,
G is one of the 8 CF-groups of level 2 on coclass graph
G(3, 2),
then the structure of the 3-class groups of N1, . . . , N4 and
the Frattini extension Ñ4 is given by

TKT κ Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε Cl3(Ñ4)

b.2 (0001) (9, 3) (9, 3) (9, 3) (9, 3, 3) 1 (9, 3)

b.3 (1000) (27, 3) (9, 3) (9, 3) (3, 3, 3) 1 (9, 3)

b.3 (1000) (27, 3) (9, 3) (9, 3) (3, 3, 3) 1 (9, 3)

b.16 (4000) (9, 3, 3) (9, 3) (9, 3) (3, 3, 3) 2 (3, 3, 3)

b.15 (0004) (9, 3) (9, 3) (9, 3) (9, 3, 3) 1 (3, 3, 3)

b.15 (0004) (9, 3) (9, 3) (9, 3) (3, 3, 3, 3) 1 (3, 3, 3)

a.1 (0000) (9, 3) (9, 3) (9, 3) (9, 3, 3) 1 (3, 3, 3)

a.1 (0000) (9, 3, 3) (9, 3) (9, 3) (3, 3, 3) 2 (3, 3, 3)

in dependence on the punctured TKT κ of K.
Here, ε denotes the number of 3-class groups Cl3(Ni) of
rank greater than 2.

Proof: D.C.Mayer, July 2011, [6] Metabelian 3-groups with abelianisation of type (9, 3), Thm.6.1.

Example 2.4. The smallest discriminant with punctured TKT
b.3, where ε = 1, is D = 635 909.
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2.3.5. Second 3-class groups G, cc(G) = 3, G/G′ ' (9, 3)

Figure 4. Sporadic groups and roots of coclass trees on the coclass graph G(3, 3)
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Proof: E.A.O’Brien, 2011, private communication.

Legend:
number in angles: GAP identifier,
big contour square: abelian group,
big full circle: metabelian group with centre of type (3, 3),
medium contour square: metabelian group with centre of type (3, 3, 3),
small contour square: metabelian group with centre of type (9, 3),
small full circle: metabelian group of order at least 2187.
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Theorem 2.9. (TTT τ (G) of branch 1 groups G in Φ6)
If |G| = 36, cl(G) = 3, G/G′ ' (9, 3), i.e.,
G is one of the 13 top vertices on coclass graph G(3, 3),
then the structure of the 3-class groups of N1, . . . , N4 and
the Frattini extension Ñ4 is given by

TKT κ Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε Cl3(Ñ4)

D.11 (4232) (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3)

D.11 (4322) (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3)

B.7 (1114) (27, 3) (27, 3) (27, 3) (3, 3, 3, 3) 1 (9, 3, 3)

B.7 (1114) (27, 3) (27, 3) (27, 3) (3, 3, 3, 3) 1 (9, 3, 3)

E.12 (1234) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3)

E.12 (1324) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3)

d.10 (0112) (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3)

e.14 (1320) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3)

e.14 (1230) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3)

A.20 (4444) (9, 3, 3) (9, 3, 3) (9, 3, 3) (3, 3, 3, 3) 4 (3, 3, 3, 3)

b.15 (0004) (9, 3, 3) (9, 3, 3) (9, 3, 3) (3, 3, 3, 3) 4 (3, 3, 3, 3)

c.27 (0440) (9, 3, 3) (9, 3, 3) (9, 3, 3) (9, 3, 3) 4 (3, 3, 3, 3)

b.31 (0444) (9, 3, 3) (9, 3, 3) (9, 3, 3) (9, 3, 3) 4 (3, 3, 3, 3)

in dependence on the punctured TKT κ of K.
Again, ε denotes the number of 3-class groups Cl3(Ni) of
rank greater than 2.

Proof: D.C.Mayer, July 2011, [6] Metabelian 3-groups with abelianisation of type (9, 3), Thm.7.1.

Example 2.5. The first discriminant with punctured TKT
D.11, where ε = 2, is D = −3 299.
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