
FINITE 3-GROUPS WITH TRANSFER KERNEL TYPE F1

DANIEL C. MAYER AND M. F. NEWMAN2

Abstract. For finite metabelian 3-groups G with abelianization G/G′ of type (3, 3), coclass

r = cc(G) ∈ {4, 6}, class c = cl(G) = r+1, and transfer kernel type F, we determine the smallest

non-trivial members of the cover, that is the set cov(G) of all finite 3-groups H whose second
derived quotient H/H′′ is isomorphic to G. We provide evidence of arithmetical realizations

of these groups by second 3-class groups G = G2
3K = Gal(F2

3K/K), respectively 3-class tower

groups H = G∞3 K = Gal(F∞3 K/K), of quadratic fields K = Q(
√
d).

1. Introduction3

For a finite 3-group G, let (γjG)j≥1 denote the lower central series. In several recent pre-4

sentations and papers [24, 25, 26, 11, 27, 28, 29, 30], we succeeded in determining the cover5

cov(G) = {H | H/H ′′ ' G} of all metabelian 3-groups G with class-1 quotient G/γ2G ' C3 × C36

and transfer kernel type (TKT) E or c [21]. These groups share the fixed coclass cc(G) = 2,7

and the common class-2 quotient G/γ3G ' 〈27, 3〉, in the notation of the SmallGroups Library8

[3, 4]. Their class-3 quotient G/γ4G is given by either 〈243,6〉 for type c.18, κ(G) ∼ (0313),9

E.6, κ(G) ∼ (1313), and E.14, κ(G) ∼ (2313), or 〈243,8〉 for type c.21, κ(G) ∼ (0231), E.8,10

κ(G) ∼ (1231), and E.9, κ(G) ∼ (2231) [19, Tbl., pp. 79–80], [21, § 3.3, Tbl. 6–7, pp. 492–494].11

The cover of metabelian groups with type E or c is finite with cardinality proportional to the12

nilpotency class. Since the derived length of the members is bounded by 3, an algebraic number13

field with capitulation type E or c must have a 3-class tower with at most three stages [11, 29, 30].14

In the present article, we determine the smallest members H with dl(H) ≥ 3 of the cover15

cov(G) of metabelian 3-groups G with abelianization G/G′ ' (3, 3) and TKT F [21]. These16

groups may have any elevated coclass r := cc(G) ≥ 3, and thus share the common class-3 quotient17

G/γ4G ' 〈243,3〉.18

Since our main intention is to shed light on the 3-class tower of quadratic fields K = Q(
√
d) with19

capitulation type F (§ 2), we focus on metabelian 3-groups G with even coclass r = cc(G) ∈ {4, 6}20

and odd class c := cl(G) = r + 1 which admit an automorphism σ ∈ Aut(G) acting as inversion21

σ : x 7→ x−1 on the abelianization G/G′. Such groups are called σ-groups.22

The groups G arise as sporadic vertices of coclass graphs G(3, r), outside of coclass trees (§ 3).23

Members of periodic infinite sequences on coclass trees T r ⊂ G(3, r) [12, 13] will be investigated24

in a subsequent paper.25

2. First step: Gathering number theoretic information26

2.1. History of transfer kernel type F. Complex quadratic fields K = Q(
√
d) with 3-class27

group Cl3K of type (3, 3) and transfer kernel type (TKT) F have been detected by Brink in 198428

[9]. The absolute values of their fundamental discriminants d set in with 27 156, outside of the29

ranges investigated by Scholz and Taussky in 1934 [36], and by Heider and Schmithals in 1982 [16].30

However, the computational results in Brink’s Thesis [9, Appendix A, pp. 96–113] were unknown31

to us until we got a copy via ProQuest in 2006. Their actual extent is not mentioned explicitly in32
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the official paper [10] by Brink and his academic advisor Gold. Therefore, we previously believed33

to have the priority in discovering the discriminant d = −27 156 of a field K with type F.11 in34

1989 [19, Tbl., p. 84], and the discriminants d = −31 908, −67 480, −124 363 of fields K with35

types F.12, F.13, F.7 in 2003 [20, Tbl. 3, p. 497], all of them with second 3-class groups G2
3K of36

coclass 4. In 2006, it turned out that our claim must be restricted to d = −124 363, which after37

nearly 20 years eventually provided the first example for type F.7, called the unique undiscovered38

type by Brink [9, § 7.2, p. 91].39

It required further 10 years until we had the courage to study the 3-class tower of number fields40

with transfer kernel type F, based on abelian type invariants of second order, as developed in [28].41

As opposed to coclass 4, we can definitely claim priority in discovering the discriminant d =42

−423 640 of a complex quadratic field K = Q(
√
d) with type F.12 in 2010 [20, Tbl. 3, p. 497], and43

the discriminants d = −1 677 768, −2 383 059, −4 838 891 of fields K with types F.7, F.13, F.11 in44

2016, all of them with second 3-class groups G2
3K of coclass 6.45

Similarly, we were the first who found the discriminant d = 8 321 505 of a real quadratic field46

K = Q(
√
d) with type F.13 in 2010 [20, Tbl. 4, p. 498], and the discriminants d = 10 165 597,47

22 937 941, 66 615 244 of fields K with types F.7, F.12, F.11 in 2016 [32, Tbl. 4, p. 1291], all of48

which possess second 3-class groups G2
3K of coclass 4.49

Table 1. Abelian type invariants τ (2)K of 2nd order for K = Q(
√
d) real with

cc(G2
3K) = 4

Type τ (2)K = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

d T1 T2 T3 T4

F.7

10 165 597 (312)3 (312)3 (212)12 (212)3, (13)9

49 425 848 (312)3 (312)3 (212)12 (213)3, (14)9

85 309 765 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

F.11

66 615 244 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

75 246 413 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

76 575 261 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

F.12

22 937 941 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

32 466 649 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

64 177 681 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

69 716 760 (312)3 (312)3 (212)12 (14)12

95 283 149 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

97 052 709 (312)3 (312)3 (212)12 (212)3, (13)9

F.13

8 321 505 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

17 373 109 (312)3 (313)3 (212)3, (13)9 (212)3, (13)9

51 376 888 (312)3 (312)3 (212)12 (14)12

72 034 376 (312)3 (312)3 (212)12 (212)3, (13)9

93 285 944 (312)3 (312)3 (212)12 (212)3, (13)9

2.2. Artin patterns for coclass 4. In Table 1, resp. 2, we present arithmetic information about50

iterated index-p abelianization data (IPADs), τ (2)K =
[
Cl3K;

(
Cl3Li; (Cl3M)M∈Lyr1Li

)
1≤i≤4

]
,51
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of second order for real, resp. complex, quadratic fields K = Q(
√
d) with 3-class group Cl3K of52

type 12=̂(3, 3), TKT F, and a second 3-class group G2
3K of coclass 4, which occur in the range53

0 < d < 108, resp. −5·105 < d < 0, of fundamental discriminants. With exception of d = 8 321 50554

[20, Tbl. 4, p. 498], the positive discriminants were discovered and investigated in March 2016 and55

published in [32, Tbl. 4, p. 1291]. The negative discriminants were taken from the lower half range56

Table 2. Abelian type invariants τ (2)K of 2nd order for K = Q(
√
d) complex

with cc(G2
3K) = 4

Type τ (2)K = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

−d T1 T2 T3 T4

F.7

124 363 (4212)3 (3212)3 (231)3, (16)3, (2212)6 (2213)3, (214)3, (2212)6

225 299 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

260 515 (3221)3 (3221)3 (3221)3, (231)3, (16)3, (2212)3 (3221)3, (16)3, (214)3, (2212)3

343 380 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

423 476 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

486 264 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

F.11

27 156 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

241 160 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

394 999 (313)3 (313)3 (213)9, (221)3 (15)3, (213)3, (14)6

477 192 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

484 804 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

F.12

31 908 (313)3 (313)3 (213)9, (221)3 (213)6, (14)6

135 587 (313)3 (313)3 (2212)3, (213)6, (221)3 (15)3, (213)3, (14)6

160 403 (3212)3 (3212)3 (24)3, (214)6, (2212)3 (2212)3, (15)6, (213)3

184 132 (413)3 (313)3 (2212)3, (213)6, (221)3 (2212)3, (213)3, (14)6

189 959 (313)3 (313)3 (2212)3, (213)6, (221)3 (213)6, (14)6

291 220 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

454 631 (313)3 (313)3 (213)9, (221)3 (213)6, (14)6

499 159 (313)3 (313)3 (213)9, (221)3 (213)3, (15)3, (14)6

F.13

67 480 (413)3 (313)3 (3212)3, (213)6, (221)3 (213)6, (14)6

104 627 (413)3 (313)3 (213)9, (221)3 (15)3, (213)3, (14)6

167 064 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

224 580 (3212)3 (3212)3 (214)3, (2212)3, (15)6 (2212)3, (15)3, (213)6

287 155 (413)3 (313)3 (213)9, (221)3 (213)6, (14)6

296 407 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

317 747 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

344 667 (413)3 (313)3 (2212)3, (213)6, (221)3 (2212)3, (213)3, (14)6

401 603 (413)3 (313)3 (221)3, (212)9 (221)3, (212)9

426 891 (413)3 (313)3 (213)9, (221)3 (213)6, (14)6

487 727 (313)3 (313)3 (213)9, (221)3 (213)3, (15)3, (14)6
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of [20, Tbl. 3, p. 497], but they were separated into the four TKTs in June 2016. The IPAD of first57

order of such a field has the form τ (1)K =
[
Cl3K; (Cl3Li)1≤i≤4

]
=
[
12;
(
32, 32, 13, 13

)]
, according58

to [23, Thm. 4.5, pp. 444–445, and Tbl. 6.10, p. 455]. We point out that we use logarithmic type59

invariants throughout this article, e.g., 32=̂(27, 9) and 13=̂(3, 3, 3). Since the Hilbert 3-class field of60

the fields K under investigation has 3-class group Cl3F1
3K ' 231=̂(9, 9, 9, 3), the iterated IPAD of61

second order of K has the shape τ (2)K =
[
12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)

]
,62

where the families T1, T2, resp. T3, T4, consist of 3, resp. 12, remaining components. Exceptional63

entries are printed in boldface font.64

Definition 2.1. The 3-class tower of the real quadratic field K with type F and G2
3K of coclass65

4 resides in the tower ground state, if the iterated IPAD of second order of K is given by66

(2.1) τ (2)K = [12; (32; 231, (312)3), (32; 231, (313)3), (13; 231, (212)3, (13)9)2].

The 3-class tower of the complex quadratic field K with type F and G2
3K of coclass 4 resides in67

the tower ground state, if the iterated IPAD of second order of K is given by68

(2.2) τ (2)K = [12; (32; 231, T1), (32; 231, (313)3), (13; 231, (221)3, (212)9)2],

where T1 = (413)3 if K is of type F.11 or F.13, and T1 = (313)3 if K is of type F.7 or F.12.69

Table 3. Abelian type invariants τ (2)K of 2nd order for K = Q(
√
d) complex

with cc(G2
3K) = 6

Type τ (2)K = [12; (43; 332, T1), (43; 332, T2), (13; 332, T3), (13; 332, T4)]

−d T1 T2 T3 T4

F.7

1 677 768 (5212)3 (4212)3 (3212)3, (213)6, (221)3 (213)6, (14)6

5 053 191 (4212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

8 723 023 (4212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

F.11

4 838 891 (5212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

5 427 023 (4212)3 (4212)3 (213)9, (221)3 (15)3, (213)3, (14)6.

8 493 815 (5212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

F.12

423 640 (4212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

8 751 215 (5212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

F.13

2 383 059 (4221)3 (4221)3 (214)3, (2212)3, (15)6 (214)3, (231)6, (2212)3

5 444 651 (4212)3 (4212)3 (2212)3, (213)6, (221)3 (2212)3, (213)3, (14)6

5 606 283 (4212)3 (4212)3 (213)6, (14)6 (213)9, (221)3

5 765 812 (5221)3 (4221)3 (214)3, (15)6, (2212)3 (214)3, (2212)9

6 863 219 (5212)3 (4212)3 (221)3, (212)9 (221)3, (212)9

8 963 839 (4212)3 (4212)3 (2212)3, (213)6, (221)3 (15)3, (213)3, (14)6

2.3. Artin patterns for coclass 6. In Table 3 we summarize the iterated IPADs of second70

order τ (2)K =
[
Cl3K;

(
Cl3Li; (Cl3M)M∈Lyr1Li

)
1≤i≤4

]
of the few complex quadratic fields K =71

Q(
√
d) with 3-class group Cl3K ' 12, TKT F, and G2

3K of coclass 6, which occur in the range72
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−107 < d < 0 of fundamental discriminants. With exception of d = −423 640 [20, Tbl. 3, p.73

497], these discriminants were discovered and investigated in June 2016. The IPAD of first order74

of such a field has the form τ (1)K =
[
Cl3K; (Cl3Li)1≤i≤4

]
=
[
12;
(
43, 43, 13, 13

)]
, according to75

[23, Thm. 4.5, pp. 444–445, and Tbl. 6.11, p. 455]. Since the Hilbert 3-class field of these76

fields K has 3-class group Cl3F1
3K ' 332, the iterated IPAD of second order of K has the form77

τ (2)K =
[
12; (43; 332, T1), (43; 332, T2), (13; 332, T3), (13; 332, T4)

]
, where the families T1, T2, resp.78

T3, T4, consist of 3, resp. 12, remaining components. As before, exceptional entries are printed in79

boldface font.80

Definition 2.2. The 3-class tower of the complex quadratic field K with type F and G2
3K of81

coclass 6 resides in the tower ground state, if the iterated IPAD of second order of K is given by82

(2.3) τ (2)K = [12; (43; 332, T1), (43; 332, (4212)3), (13; 332, (221)3, (212)9)2],

where T1 = (5212)3 if K is of type F.11 or F.13, and T1 = (4212)3 if K is of type F.7 or F.12.83

3. Second step: Searching for suitable metabelian 3-groups84

3.1. Nebelung’s infinite main trunk. 3-groups G with coclass cc(G) = 1 were investigated by85

N. Blackburn [5] in 1958. All of these CF-groups have abelianization G/G′ ' (3, 3) and abelian86

commutator subgroup G′. Twenty years later, J. A. Ascione wrote her Thesis [1, 2] about two-87

generated 3-groups with coclass cc(G) = 2, which split into CF-groups with G/G′ ' (9, 3) and88

non-CF groups with G/G′ ' (3, 3). The latter arise from immediate descendants of step size89

s = 2 of Blackburn’s group G3
0(0, 0) = 〈27, 3〉. Ascione recognized that many groups under her90

investigation can be arranged in periodic branches of infinite coclass trees [27], as they were called91

after rigorous proofs of their structure were developed by M. du Sautoy [12] and independently by92

B. Eick and C. Leedham-Green [13].93

Further ten years later, B. Nebelung [33] succeeded in determining parametrized presentations94

G = Gm,nρ (α, β, γ, δ) for all metabelian 3-groups G with G/G′ ' (3, 3), in particular for the non-95

CF groups with elevated coclass cc(G) ≥ 3, which were unknown previously. Her crucial idea96

was to show the existence of an infinite main trunk (P2j+1)j≥1 (Figure 1) consisting of metabelian97

3-groups such that all desired groups with fixed coclass r = j+1 arise from the vertex P2j+1, more98

precisely, from an immediate descendant of step size s = 2 of P2j+1 (which causes the non-CF99

property). In contrast to the mainline of a coclass tree, where each successor is an immediate100

descendant of step size s = 1 of its predecessor, the vertex P2j+3 is an immediate descendant of101

step size s = 2 of the vertex P2j+1, for each j ≥ 1. Thus, the main trunk was the first example of102

periodic bifurcations in a descendant tree [27]. (Cfr. [21, p. 485], [22, Thm. 3.15, pp. 440–441]).103

Theorem 3.1. (The main trunk; Nebelung, 1989, [33, p. 192])104

(1) In the descendant tree T (R) of the abelian root R := C3 × C3 = 〈9, 2〉, there exists a105

unique infinite path of (reverse) directed edges (P2j+1 ← P2j+3)j≥1 such that, for each106

fixed coclass r = j + 1 ≥ 2, every metabelian 3-group G with G/G′ ' (3, 3) and cc(G) = r107

is a proper descendant of P2j+1.108

(2) The trailing vertex P3 is exactly the extra special Blackburn group G3
0(0, 0) = 〈27, 3〉 with109

exceptional transfer kernel type (TKT) a.1, κ = (0000).110

(3) All the other vertices P2j+1 with j ≥ 2 share the common TKT b.10, κ = (0043), possess111

nilpotency class c = j + 1, coclass r = j, logarithmic order c + r = 2j + 1, abelian112

commutator subgroup of type D := A(3, c − 1) × A(3, r − 1), IPAD of first order τ (1) =113 [
12; A(3, c),A(3, r + 1), 13, 13

]
, where r+ 1 = c, and iterated IPAD of second order τ (2) =114 [

12; (A(3, c);D,B(3, c− 1)× C(3))2, (13;D, (13)12)2
]
, where115

B(3, c− 1) :=

{
C(3t)× C(3t−1) if c = 2t is even,

C(3t)× C(3t−2) if c = 2t− 1 is odd.
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(4) For j ≥ 4, periodicity of length 2 sets in, P2j+1 has nuclear rank ν = 2, p-multiplicator116

rank µ = 6, and immediate descendant numbers (including non-metabelian groups)117

(N1/C1, N2/C2) =

{
(21/1, 151/21) if j ≥ 4 is even,

(30/1, 295/37) if j ≥ 5 is odd.

Restricted to metabelian groups, the immediate descendant numbers are118

(Ñ1/C̃1, Ñ2/C̃2) =

{
(10/1, 15/8) if j ≥ 4 is even,

(12/1, 27/14) if j ≥ 3 is odd.

All immediate descendants are σ-groups, if j ≥ 1 is odd, but only (3/3, 1/1), if j = 2, and119

(3/1, 1/1), if j ≥ 4 is even.120

Corollary 3.1. (All coclass trees with metabelian mainlines; Nebelung, [33, § 5.2, pp. 181–195])121

Figure 1. Metabelian mainline skeleton of the descendant tree T (C3 × C3)
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The coclass trees of 3-groups G with G/G′ ' (3, 3), whose mainlines consist of metabelian vertices,122

possess the following remarkable periodicity of length 2, drawn impressively in Figure 1.123

(1) For even j ≥ 2, the vertex P2j+1 with subscript 2j + 1 ≥ 5 of the main trunk has exactly124

4 immediate descendants of step size s = 2 giving rise to coclass trees T j+1 ⊂ G(3, j + 1)125

whose mainline vertices are metabelian 3-groups G with odd cc(G) = j+ 1 and fixed TKT,126

either d.19, κ = (4043), or d.23, κ = (1043), or d.25, κ = (2043), or b.10, κ = (0043),127

the latter with root P2j+3.128

(2) For odd j ≥ 3, the vertex P2j+1 with subscript 2j + 1 ≥ 7 of the main trunk has exactly129

6 immediate descendants of step size s = 2 giving rise to coclass trees T j+1 ⊂ G(3, j + 1)130

whose mainline vertices are metabelian 3-groups G with even cc(G) = j+1 and fixed TKT,131

either d.19, κ = (4043), twice, or d.23, κ = (1043), or d.25, κ = (2043), twice, or b.10,132

κ = (0043), the latter with root P2j+3.133

(3) The unique pre-periodic exception is the vertex P3 of the main trunk, which has exactly 3134

immediate descendants of step size s = 2 giving rise to coclass trees T 2 ⊂ G(3, 2) whose135

mainline vertices are metabelian 3-groups G with even cc(G) = 2 and fixed TKT, either136

c.18, κ = (0313), or c.21, κ = (0231), or b.10, κ = (0043), the latter with root P5.137

3.2. Sporadic vertices outside of coclass trees. Now we begin our search for finite metabelian138

σ-groups of minimal order with type F. According to Theorem 3.1, they belong to the sporadic139

part of the coclass graph G(3, 4), because groups with type F and coclass 3 are not σ-groups.140

Theorem 3.2. There exist precisely 13 metabelian 3-groups G of order |G| = 39, class cl(G) = 5,141

coclass cc(G) = 4, and relation rank d2G = 4, having transfer kernel types (TKTs) in section142

F. They are immediate descendants of step size s = 2 of the parent group P7 = 〈2187, 64〉 in the143

SmallGroups library [3, 4], that is, their last lower central γ5G is of type (3, 3) and P7 ' G/γ5G144

is their common class-4 quotient. In the notation of the ANUPQ package [14] of GAP [15] and145

MAGMA [18], they are given by G = P7 −#2;m with146 
m ∈ {36, 38} for TKT F.11, κ(G) = (1143),

m ∈ {41, 47, 50, 52} for TKT F.13, κ(G) = (3143),

m ∈ {43, 46, 51, 53} for TKT F.12, κ(G) = (1343),

m ∈ {55, 56, 58} for TKT F.7, κ(G) = (3443).

Proof. We use the p-group generation algorithm [34, 35, 17] as implemented in the computational147

algebra system Magma [6, 7, 18] to construct these 13 groups. We start with P :=SmallGroup(2187, 64),148

c :=NilpotencyClass(P ), call the Magma functionD :=descendants(P, c+1 :step sizes:= [2]),149

and test all members of the list D for a suitable TKT in section F, making use of our own imple-150

mentation of the Artin transfer homomorphisms and σ-automorphism checking. �151

Remark 3.1. A different proof of Theorem 4.1 is possible by using results of Nebelung [33],152

which contain parametrized presentations G6,9
ρ (α, β, γ, δ) of the groups with type F, ρ = 0, index153

of nilpotency cl(G) + 1 = 6, and logarithmic order lo(G) = 9. The quartet (α, β, γ, δ) is given154

by (1, 1, 0, 0) for ` = 36, (1,−1, 0, 0) for ` = 38, (1, 1,−1, 0) for ` = 41, (−1,−1, 1, 0) for ` = 47,155

(1,−1,−1, 0) for ` = 50, (−1, 1, 1, 0) for ` = 52, (1, 1, 0,−1) for ` = 43, (−1,−1, 0, 1) for ` = 46,156

(−1, 1, 0,−1) for ` = 51, (1,−1, 0, 1) for ` = 53, (1, 1,−1, 1) for ` = 55, (1,−1,−1,−1) for ` = 56,157

and (−1, 1, 1, 1) for ` = 58.158

Figure 2 shows the complete normal lattice of the groups G in Theorems 3.3 and 3.2. The159

lattice consists of diamonds of type (3, 3). Omitting two of the four cyclic subgroups, we draw160

each diamond as a square standing on one of its vertices. The members γjG, 1 ≤ j ≤ cl(G) + 1,161

of the lower central series are indicated by tiny full discs. Except for the mandatory bottleneck162

γ2G/γ3G, all factors γjG/γj+1G are bicyclic. Thus we call G a BF-group (as opposed to a CF-163

group [33]). For such groups, the upper central series ζjG, 0 ≤ j ≤ cl(G), is just the reverse lower164

central series. To enable a comparison, we emphasize that the smallest metabelian Schur σ-groups165

of order 35 with type D, i.e., the two groups 〈243, 5|7〉, have a similar but more simple normal166

structure [20, 23, 22].167
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The following finite metabelian σ-groups of bigger order and type F belong to the sporadic part168

of the coclass graph G(3, 6), again in view of Theorem 3.1.169

Theorem 3.3. There exist precisely 13 metabelian 3-groups G of order |G| = 313, class cl(G) = 7,170

coclass cc(G) = 6, and relation rank d2G = 4, having transfer kernel types (TKTs) in section F.171

They are immediate descendants of step size s = 2 of the parent group P11 = P7−#2; 33−#2; 25172

in the notation of the ANUPQ package [14] of GAP [15] and MAGMA [18], that is, their last lower173

central γ7G is of type (3, 3) and P11 ' G/γ7G is their common class-6 quotient. They are given174

by G = P11 −#2;m with175 
m ∈ {40, 42} for TKT F.11, κ(G) = (1143),

m ∈ {45, 51, 54, 56} for TKT F.13, κ(G) = (3143),

m ∈ {47, 50, 55, 57} for TKT F.12, κ(G) = (1343),

m ∈ {59, 60, 62} for TKT F.7, κ(G) = (3443).

Remark 3.2. The group 〈2187, 64〉 −#2; 33 is a sibling of the 13 groups in Theorem 3.2 and the176

grandparent of the 13 groups in Theorem 3.3.177

Proof. Again, we use the p-group generation algorithm [34, 35, 17] as implemented in the computa-178

tional algebra system Magma [6, 7, 18] to construct these 13 groups. We start with P = 〈2187, 64〉−179

#2; 33−#2; 25, given by its compact presentation s, i.e. P :=PCGroup(s), c :=NilpotencyClass(P ),180

call the Magma function D :=descendants(P, c + 1 :step sizes:= [2]), and test all members of181

the list D for a suitable TKT in section F, making use of our own implementation of the Artin182

transfer homomorphisms and σ-automorphism checking. �183

Remark 3.3. Again, Theorem 3.3 can be proved with the aid of Nebelung’s Thesis [33], which184

gives parametrized presentations G8,13
ρ (α, β, γ, δ) of the groups with type F, ρ = 0, index of185

nilpotency cl(G) + 1 = 8, and logarithmic order lo(G) = 13. The quartet (α, β, γ, δ) is given by186

(1, 1, 0, 0) for ` = 40, (1,−1, 0, 0) for ` = 42, (1, 1,−1, 0) for ` = 45, (−1,−1, 1, 0) for ` = 51,187

(1,−1,−1, 0) for ` = 54, and (−1, 1, 1, 0) for ` = 56.188

The metabelian σ-groups G = P7−#2;m of coclass 4 in Theorem 3.2 are the unique contestants189

for the second 3-class group G2
3K of (complex and real) quadratic fields K = Q(

√
d) with IPAD190

τ (1)K =
[
12; (32)2, (13)2

]
and 3-capitulation type F. Since their relation rank is uniformly given191

by d2G = 4, the Shafarevich Theorem [37] discourages them as 3-class tower groups G∞3 K of192

Figure 2. 3-groups of orders 313, 39 with TKT F, and of order 35 with TKT D.
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quadratic fields K, both, complex and real. All of them share the common iterated IPAD of193

second order194

(3.1) τ (2)G =
[
12; (32; 231, (312)3)2, (13; 231, (13)12)2

]
.

The metabelian σ-groups G = P11−#2;m of coclass 6 in Theorem 3.3 are the unique contestants195

for the second 3-class group G2
3K of (complex and real) quadratic fields K = Q(

√
d) with IPAD196

τ (1)K =
[
12; (43)2, (13)2

]
and 3-capitulation type F. Since their relation rank is uniformly given197

by d2G = 4, the Shafarevich Theorem [37] discourages them as 3-class tower groups G∞3 K of198

quadratic fields K, both, complex and real. All of them share the common iterated IPAD of199

second order200

(3.2) τ (2)G =
[
12; (43; 332, (421)3)2, (13; 332, (13)12)2

]
.

4. Third step: Constructing the smallest members of the cover201

4.1. Cover with relation rank 3 for real fields. We begin with the smallest non-metabelian202

σ-groups H which have relation rank d2H = 3 and are candidates for 3-class tower groups of real203

quadratic fields K, according to Shafarevich [37].204

Theorem 4.1. The non-trivial members H of minimal order |H| = 310, class cl(H) = 5, coclass205

cc(H) = 5, and derived length dl(H) = 3, of the cover cov(G) = {H | H/H ′′ ' G} of the 13206

groups G = P7 − #2;m with type F in Theorem 3.2 are 96 immediate descendants of step size207

3 of the parent group P7 = 〈2187, 64〉, that is, their last lower central γ5H is of type (3, 3, 3)208

and P7 ' H/γ5H is their common class-4 quotient. They are of the form H = P7 − #3; ` with209

identifiers ` given in Table 4, where terminal groups with d2H = 3 and capable groups with d2H = 4210

are distinguished.211

Table 4. Cover groups of order 310 of 3-groups of order 39 with TKT F

Terminal Capable Total

m for ` = for ` = count

F.11

36 140, 141 239, 254, 260, 310, 313, 316 8

38 143, 144 240, 255, 261, 268, 271, 274 8

F.13

41 148, 149 281, 296, 302, 312, 315, 318 8

47 158, 159 269, 272, 275, 324, 339, 345 8

50 162, 171 242, 248, 263, 325, 331, 346 8

52 164, 166 243, 249, 264, 283, 289, 304 8

F.12

43 151, 152 270, 273, 276, 282, 297, 303 8

46 156, 157 311, 314, 317, 323, 338, 344 8

51 163, 176 245, 251, 257, 328, 334, 340 8

53 165, 177 246, 252, 258, 286, 292, 298 8

F.7

55 168, 178 287, 293, 299, 330, 336, 342 8

56 169 285, 291, 306 4

58 172 326, 332, 347 4
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Proof. We use the p-group generation algorithm [34, 35, 17] as implemented in the computational212

algebra system Magma [6, 7, 18] to construct these 96 groups. We start with P :=SmallGroup(2187, 64),213

c :=NilpotencyClass(P ), call the Magma functionD :=descendants(P, c+1 :step sizes:= [3]),214

and test all members of the list D for a suitable TKT in section F, making use of our own imple-215

mentation of the Artin transfer homomorphisms. Finally we check the 96 second derived quotients216

H/H ′′ against the 13 groups G of Theorem 3.2 for isomorphism H/H ′′ ' G, stopping at the first217

isomorphism encountered. The two groups G with identifiers 56, 58 of TKT F.7 turn out to be ex-218

ceptional, since they are associated with four non-metabelian groups H only, instead of eight. �219

4.1.1. Cover groups H with lo(H) = 10. The 24 terminal non-metabelian σ-groups H = P7−#3; `220

of coclass 5 in Theorem 4.1 and Table 4 have the maximal relation rank d2H = 3 permitted for221

3-class tower groups G∞3 K of real quadratic fields K, but too big for complex quadratic fields [37].222

Since all of them share the common iterated IPAD of second order223

(4.1) τ (2)H =
[
12; (32; 231, (312)3), (32; 231, (313)3), (13; 231, (212)3, (13)9)2

]
,

the following hypothesis is compatible with data available currently in Table 1.224

Conjecture 4.1. (Tower ground state) The real quadratic fields K = Q(
√
d) with fundamen-225

tal discriminants d ∈ {66 615 244, 76 575 261} of type F.11, resp. d = 22 937 941 of type F.12,226

resp. d ∈ {8 321 505, 17 373 109} of type F.13, have 3-class field towers of exact length `3K =227

3 with group G∞3 K ' P7 − #3; `, where ` ∈ {140, 141, 143, 144}, for type F.11, resp. ` ∈228

{151, 152, 156, 157, 163, 176, 165, 177}, for type F.12, resp. ` ∈ {148, 149, 158, 159, 162, 171, 164, 166},229

for type F.13.230

For all types F.11, F.12, F.13, the tower group H = G∞3 K has lo(H) = 10, cl(H) = 5,231

cc(H) = 5, ζ1H = (3, 3, 3), γ22H = (3), and #Aut(H) = 2 · 314.232

Remark 4.1. Figure 3 shows one of the possible tree topologies for the real quadratic field K =233

Q(
√

8 321 505) of type F.13, expressing the mutual location of G = G2
3K and H = G3

3K = G∞3 K,234

connected by the fork πG = πH = P7 of type b.10.235

Figure 3. Possible sibling topology of K = Q(
√

8 321 505)

2 187 37

6 561 38

19 683 39

59 049 310

?

Order 3n

fork πG = πH = P7 = 〈37, 64〉
b.10u

�
�
�

�
�
�u

child G = P7 −#2; 41

F.13

J
J
J
J
J
J
J
J
J2∗

sibling H = P7 −#3; 148|149
F.13

Topology Symbol:

F
(

2
→

)
b
(

3
←

)
F

4.1.2. Cover groups H with lo(H) = 12. Each of the capable non-metabelian σ-groups D = P7 −236

#3; ` of coclass 5 in Theorem 4.1 and Table 4 with iterated IPAD of second order237

(4.2) τ (2)D =
[
12; (32; 231, (312)3), (32; 231, (312)3), (13; 231, (212)12), (13; 231, (212)3, (13)9)

]
,

has nuclear rank ν = 1 and p-multiplicator rank µ = 4. There are two possible scenarios for the238

immediate descendant numbers:239
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either the first scenario: (N1/C1) = (8/5), there is only a single capable σ-child P7 −#3; `−240

#1; k with (ν, µ) = (1, 4), (N1/C1) = (3/0), and all three terminal grandchildren H = P7−#3; `−241

#1; k −#1; j with 1 ≤ j ≤ 3 have d2H = 3,242

or the second scenario: (N1/C1) ∈ {(8/8), (8/5)}, there is also only a single capable σ-child243

P7 − #3; ` − #1; k with (ν, µ) = (1, 4), (N1/C1) = (1/0), and the terminal grandchild H =244

P7 −#3; `−#1; k −#1; j with j = 1 has d2H = 3.245

This is the maximal relation rank permitted for 3-class tower groups G∞3 K of real quadratic fields246

K [37]. Therefore, we suggest the following hypothesis, based on Table 1.247

Conjecture 4.2. (Excited tower state) The real quadratic fields K = Q(
√
d) with fundamental248

discriminants d = 10 165 597 of type F.7, resp. d = 72 034 376 of type F.13, have 3-class field249

towers of exact length `3K = 3 with group G∞3 K ' P7 −#3; `−#1; k −#1; j, where250

(`, k) ∈ {(293, 7), (299, 5), (336, 5), (342, 5), (291, 5), (306, 7), (332, 5), (347, 5)},

1 ≤ j ≤ 3, resp.251

(`, k) ∈ {(272, 7), (289, 8), (296, 5), (302, 8), (304, 5), (315, 8), (331, 5), (339, 4), (345, 4), (346, 5)},

1 ≤ j ≤ 3, or252

(`, k) ∈ {(248, 8), (249, 8), (263, 7), (264, 7), (275, 4), (318, 5)},
j = 1.253

For type F.7, we always have the first scenario, and the tower group H = G∞3 K has lo(H) = 12,254

cl(H) = 7, cc(H) = 5, ζ1H = (3, 3), γ22H = (3, 3, 3), and #Aut(H) = 2 · 317.255

For type F.13, first scenario, the tower group H has lo(H) = 12, cl(H) = 7, cc(H) = 5,256

ζ1H = (3, 3), γ22H = (9, 3) or γ22H = (3, 3, 3), and #Aut(H) = 2 · 317.257

For type F.13, second scenario, the tower group H has lo(H) = 12, cl(H) = 7, cc(H) = 5,258

ζ1H = (9), γ22H = (9, 3), and #Aut(H) = 2 · 316.259

Remark 4.2. Figure 4 shows one of the possible tree topologies for the real quadratic field K =260

Q(
√

10 165 597) of type F.7, expressing the mutual location of G = G2
3K and H = G3

3K = G∞3 K,261

connected by the fork πG = π3H = P7 of type b.10.262

Figure 4. Possible fork topology of K = Q(
√

10 165 597)

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

?

Order 3n

fork πG = π3H = P7 = 〈37, 64〉
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child G = P7 −#2; 55
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J
J2∗
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child πH = π2H −#1; 7
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Topology Symbol:
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(
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→

)
b
(

3
←

)
F
[(

1
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)
F
]2
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Remark 4.3. (Open problems No. 1)263

The Conjectures 4.1 and 4.2 would be theorems, when we succeeded in proving that there are264

neither 3-groups H of type F with lo(H) ≥ 11 satisfying Formula (4.1) nor with lo(H) ≥ 13265

satisfying Formula (4.2). Due to the partial order of IPADs in descendant trees [31], this is only266

a finite (but possibly rather extensive) task, provided there does not occur a total stabilization.267

4.2. Cover with relation rank 2 for complex fields. Next we search for the smallest non-268

metabelian σ-groups H with relation rank d2H = 2 (the so-called Schur σ-groups), which are269

candidates for 3-class tower groups of complex quadratic fields K [37] with G = G2
3K of coclass270

cc(G) = 4. Since this process is of considerable complexity, we prefer a splitting into the TKTs271

F.7, F.11, F.12, and F.13.272

Table 5. Abelian quotient invariants of second order, τ (2)D, for D = P7 −#4; `

Identifier Cat. τ (2)D = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

` = T1 T2 T3 T4

23, 24, 26 1 (313)3 (313)3 (213)3, (14)9 (213)3, (14)9

42, 44, 50, 54, 2 (313)3 (313)3 (221)3, (212)9 (213)3, (14)9

68, 72, 78, 80

121,123,128, 131, 142, 3 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

145,165, 169, 174, 196

4.2.1. Type F.7. Table 5 classifies the 21 = 3 + 8 + 10 immediate descendants D of step size 4 of273

P7 := 〈2187, 64〉 with type F.7 into three categories, according to the IPAD of second order.274

For the first category, all abelian quotients of subgroups of index 9 possess 3-rank 4. For the275

second category, T3 consists of twelve abelian quotients with 3-rank 3. For the third category, T3276

and T4 both consist of twelve abelian quotients with 3-rank 3. Note that the abelianization of the277

commutator subgroup, (231), which occurs in all four components of the IPAD of second order,278

has 3-rank 4.279

Among the 10 members D of category three, 7 give rise to batches of 27, resp. 18, Schur σ-280

groups H each. Their identifiers in the sense of the ANUPQ package [14], which is implemented281

in GAP [15] and MAGMA [18], are given in the following shape:282

(4.3) H = P7 −#4; `−#2; k −#4; j −#1; i−#2; 1,

where ` is one of the counters different from 123, 128 and 165 in category three of Table 5,283

1 ≤ k ≤ 41, resp. 1 ≤ k ≤ 21, has a unique value in dependence on ` (the unique σ-group among284

the immediate descendants of step size 2), j completely runs through the range 1 ≤ j ≤ 27, resp.285

1 ≤ j ≤ 18, and 1 ≤ i ≤ 5 is a unique value in dependence on j.286

All the Schur σ-groups H share a common logarithmic order lo(H) = 20, class cl(H) = 9,287

coclass cc(H) = 11, derived length dl(H) = 3, and IPAD of second order,288

(4.4) τ (2)H = [12; (32; 231, (313)3)2, (13; 231, (221)3, (212)9)2].

Their automorphism group is of uniform order #Aut(H) = 2 · 325. However, Table 7 shows that289

the centre, ζ1H, the second derived subgroup, γ22H, and the number t of possible values for j290

occur in three variants of Table 6.291

Table 7 also gives the number m of the metabelianization H/H ′′ ' G = P7−#2;m from Theorem292

3.2, in dependence on `.293



FINITE 3-GROUPS WITH TRANSFER KERNEL TYPE F 13

Table 6. Variants of ζ1H, γ22H, and the number t

Variant IV V VI

ζ1H 22 212 22

γ22H 32213 32312 32213

t 27 27 18

Table 7. Association of the values m, k, and the variant to each value of `

` 121 131 142 145 169 174 196

m 55 55 56 58 56 58 55

k 14 13 19 21 14 13 31

var. V V VI VI V V IV

Table 8. Abelian quotient invariants of second order, τ (2)D, for D = P7 −#4; `

Identifier Cat. τ (2)D = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

` = T1 T2 T3 T4

4, 6 1 (313)3 (313)3 (213)3, (14)9 (213)3, (14)9

37, 46, 64, 73, 2 (313)3 (313)3 (221)3, (212)9 (213)3, (14)9

86, 87, 89, 90

119, 127, 139, 144, 3 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

164, 172, 180, 182

4.2.2. Type F.11. Table 8 classifies the 18 = 2 + 8 + 8 immediate descendants D of step size 4 of294

P7 := 〈2187, 64〉 with type F.11 into three categories, according to the IPAD of second order.295

All 8 members D of category three give rise to batches of 27, resp. 81, Schur σ-groups H each.296

Their identifiers in the sense of the ANUPQ package [14], which is implemented in GAP [15] and297

MAGMA [18], are given in the following shape:298

(4.5) H = P7 −#4; `−#2; k −#4; j −#1; i−#2; 1,

where ` is one of the counters in category three of Table 8, 1 ≤ k ≤ 41 has a unique value299

in dependence on ` (the unique σ-group among the immediate descendants of step size 2), j300

completely runs through the range 1 ≤ j ≤ 27, resp. 1 ≤ j ≤ 81, and 1 ≤ i ≤ 5 is a unique value301

in dependence on j.302

All the Schur σ-groups H share a common logarithmic order lo(H) = 20, class cl(H) = 9,303

coclass cc(H) = 11, derived length dl(H) = 3, and IPAD of second order,304

(4.6) τ (2)H = [12; (32; 231, (413)3), (32; 231, (313)3), (13; 231, (221)3, (212)9)2].

Their centre, ζ1H, is of uniform type (32). However, Table 10 shows that the order #Aut(H) of305

the automorphism group, the second derived subgroup, γ22H, and the number t of possible values306

for j occur in two variants of Table 9.307

Table 10 also gives the number m of the metabelianization H/H ′′ ' G = P7−#2;m from Theorem308

3.2, in dependence on `.309

4.2.3. Type F.12. Table 11 classifies the 36 = 4 + 16 + 16 immediate descendants D of step size 4310

of P7 := 〈2187, 64〉 with type F.12 into three categories, according to the IPAD of second order.311
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Table 9. Variants of #Aut(H), γ22H, and the number t

Variant 1 2

#Aut(H) 2 · 326 2 · 325

γ22H 32312 32213

t 81 27

Table 10. Association of the values m, k, and the variant to each value of `

` 119 127 139 144 164 172 180 182

m 38 36 38 36 38 36 36 38

k 41 32 41 41 41 32 32 31

var. 1 1 2 2 1 1 2 2

Table 11. Abelian quotient invariants of second order, τ (2)D, for D = P7 −#4; `

Identifier Cat. τ (2)D = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

` = T1 T2 T3 T4

11, 14, 19, 21 1 (313)3 (313)3 (213)3, (14)9 (213)3, (14)9

33, 36, 39, 43, 48, 49, 59, 62, 2 (313)3 (313)3 (221)3, (212)9 (213)3, (14)9

65, 70, 74, 76, 98, 99, 104, 105

113, 116, 118, 125, 126, 130, 143, 146, 3 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

157,160, 170, 175, 187, 190, 194, 195

Among the 16 members D of category three, 14 give rise to batches of 27 Schur σ-groups H312

each. Their identifiers in the sense of the ANUPQ package [14], which is implemented in GAP313

[15] and MAGMA [18], are given in the following shape:314

(4.7) H = P7 −#4; `−#2; k −#4; j −#1; i−#2; 1,

where ` is one of the counters different from 157 and 160 in category three of Table 11, 1 ≤ k ≤ 41315

has a unique value in dependence on ` (the unique σ-group among the immediate descendants of316

step size 2), j completely runs through the range 1 ≤ j ≤ 27, and 1 ≤ i ≤ 5 is a unique value in317

dependence on j.318

All the Schur σ-groups H share a common logarithmic order lo(H) = 20, class cl(H) = 9,319

coclass cc(H) = 11, and derived length dl(H) = 3. Their automorphism group is of uniform order320

#Aut(H) = 2 · 325. However, Table 13 shows that the centre, ζ1H, the second derived subgroup,321

γ22H, and a component n of the IPAD of second order,322

(4.8) τ (2)H = [12; (32; 231, (n13)3), (32; 231, (313)3), (13; 231, (221)3, (212)9)2],

occur in the five variants of Table 12.323

Table 13 also gives the number m of the metabelianization H/H ′′ ' G = P7−#2;m from Theorem324

3.2, in dependence on `.325

4.2.4. Type F.13. Table 14 classifies the 36 = 4 + 16 + 16 immediate descendants D of step size 4326

of P7 := 〈2187, 64〉 with type F.13 into three categories, according to the IPAD of second order.327
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Table 12. Variants of ζ1H, γ22H, and τ (2)H

Variant I II III IV V

ζ1H 22 212 212 22 212

γ22H 32312 32312 32213 32213 32312

n 4 4 3 3 3

Table 13. Association of the values m, k, and the variant to each value of `

` 113 116 118 125 126 130 143 146 170 175 187 190 194 195

m 51 53 53 43 51 46 43 46 43 46 43 46 51 53

k 32 31 41 11 41 1 14 13 40 32 10 11 28 29

var. III III IV V IV V IV IV I I II II I I

Table 14. Abelian quotient invariants of second order, τ (2)D, for D = P7 −#4; `

Identifier Cat. τ (2)D = [12; (32; 231, T1), (32; 231, T2), (13; 231, T3), (13; 231, T4)]

` = T1 T2 T3 T4

9, 15, 18, 20 1 (313)3 (313)3 (213)3, (14)9 (213)3, (14)9

32, 35, 38, 40, 47, 52, 60, 63, 2 (313)3 (313)3 (221)3, (212)9 (213)3, (14)9

66, 67, 75, 79, 95, 96, 107, 108

112,115, 122, 132, 135, 137, 141, 147, 3 (313)3 (313)3 (221)3, (212)9 (221)3, (212)9

158, 161, 163, 167, 171, 177, 185, 192

Among the 16 members D of category three, 14 give rise to batches of 27 Schur σ-groups H328

each. Their identifiers in the sense of the ANUPQ package [14], which is implemented in GAP329

[15] and MAGMA [18], are given in the following shape:330

(4.9) H = P7 −#4; `−#2; k −#4; j −#1; i−#2; 1,

where ` is one of the counters different from 112 and 115 in category three of Table 14, 1 ≤ k ≤ 41331

has a unique value in dependence on ` (the unique σ-group among the immediate descendants of332

step size 2), j completely runs through the range 1 ≤ j ≤ 27, and 1 ≤ i ≤ 5 is a unique value in333

dependence on j.334

All the Schur σ-groups H share a common logarithmic order lo(H) = 20, class cl(H) = 9,335

coclass cc(H) = 11, and derived length dl(H) = 3. Their automorphism group is of uniform order336

#Aut(H) = 2 · 325. However, Table 16 shows that the centre, ζ1H, the second derived subgroup,337

γ22H, and a component n of the IPAD of second order,338

(4.10) τ (2)H = [12; (32; 231, (n13)3), (32; 231, (313)3), (13; 231, (221)3, (212)9)2],

occur in the five variants of Table 15.339

Table 16 also gives the number m of the metabelianization H/H ′′ ' G = P7−#2;m from Theorem340

3.2, in dependence on `.341

4.2.5. Schur σ-groups H with lo(H) = 20. We summarize the results about the Shafarevich cover342

cov(G,K) of metabelian σ-groups G of type F, logarithmic order lo(G) = 9 and coclass cc(G) =343

4, with respect to complex quadratic fields K, from §§ 4.2.1 – 4.2.4 in the following theorem,344
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Table 15. Variants of ζ1H, γ22H, and τ (2)H

Variant I II III IV V

ζ1H 22 212 212 22 212

γ22H 32312 32312 32213 32213 32312

n 4 4 3 3 3

Table 16. Association of the values m, k, and the variant to each value of `

` 122 132 135 137 141 147 158 161 163 167 171 177 185 192

m 47 41 50 52 47 41 50 52 52 47 50 41 41 47

k 40 32 29 28 40 41 31 32 41 11 41 1 41 40

var. I I I I II II III III IV V IV V IV IV

disregarding several variants of the centre ζ1H and the second derived subgroup γ22H of the non-345

metabelian contestants H.346

Theorem 4.2. Let G := P7 − #2;m be a sporadic metabelian 3-group G of type F with coclass347

cc(G) = 4. The following counters concern 1359 pairwise non-isomorphic Schur σ-groups H of348

logarithmic order lo(H) = 20 and nilpotency class cl(H) = 9 such that H/H ′′ ' G.349

(1) For type F.7, there exist 171, in more detail,350

81, 45, 45 Schur σ-groups H satisfying Formula (4.4) in cov(G,K), for m = 55, 56, 58.351

They all have #Aut(H) = 2 · 325.352

(2) For type F.11, there exist 108 + 324, in more detail,353

(a) 54, 54 Schur σ-groups H satisfying Formula (4.6) and having #Aut(H) = 2 · 325354

in cov(G,K), for m = 36, 38;355

(b) 162, 162 Schur σ-groups H satisfying Formula (4.6) and having #Aut(H) = 2 · 326356

in cov(G,K), for m = 36, 38.357

(3) For type F.12, there exist 216 + 162, in more detail,358

(a) 54, 54, 54, 54 Schur σ-groups H satisfying Formula (4.8) with n = 3359

in cov(G,K), for m = 43, 46, 51, 53;360

(b) 54, 54, 27, 27 Schur σ-groups H satisfying Formula (4.8) with n = 4361

in cov(G,K), for m = 43, 46, 51, 53.362

They all have #Aut(H) = 2 · 325.363

(4) For type F.13, there exist 216 + 162, in more detail,364

(a) 54, 54, 54, 54 Schur σ-groups H satisfying Formula (4.10) with n = 3365

in cov(G,K), for m = 41, 47, 50, 52;366

(b) 54, 54, 27, 27 Schur σ-groups H satisfying Formula (4.10) with n = 4367

in cov(G,K), for m = 41, 47, 50, 52.368

They all have #Aut(H) = 2 · 325.369

Remark 4.4. In Theorem 4.1 and Table 4, we have proved that the smallest non-trivial members370

of the Shafarevich cover cov(G,K) of the metabelian σ-groupsG = P7−#2;m of type F, lo(G) = 9,371

cc(G) = 4, with respect to real quadratic fields K, are non-metabelian σ-groups H = P7−#3; ` of372

lo(H) = 10, dl(H) = 3, with d2H = 3, a single such group for m ∈ {56, 58}, two groups otherwise.373

(In the Shafarevich cover of complex quadratic fields, these groups are forbidden.)374

Of course, the Shafarevich cover cov(G,K) for real K also contains the suitable corresponding375

Schur σ-groups H of Theorem 4.2, which have lo(H) = 20, dl(H) = 3, and d2H = 2.376

However, in Table 1, there do not occur any iterated IPADs of the Formulas (4.4), (4.6), (4.8),377

and (4.10). This means that real quadratic fields are happy with 3-class tower groups H having378

the minimal lo(H) = 10 but only d2H = 3. They do not insist on Schur σ-groups.379
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This tendency can be made more precise with the aid of recent asymptotic densities, forming a380

non-abelian analogue of the heuristic by Cohen, Lenstra, and Martinet.381

According to not yet published investigations by Boston, Bush, and Hajir, the probability382

ProbKH that an assigned σ-group H of order a power of 3 occurs as the 3-class tower group383

H ' G∞3 K of a real quadratic field K is proportional to the reciprocal product #H ·#Aut(H):384

(4.11) ProbKH ∼
1

#H ·#Aut(H)

The groups H of Theorem 4.1 have #H = 310 and #Aut(H) = 2 · 314. The Schur σ-groups of385

Theorem 4.2 have #H = 320 and usually #Aut(H) = 2 · 325. Consequently, the probability for386

the former is387

(310 · 2 · 314)−1 : (320 · 2 · 325)−1 = 310 · 311 = 321 = 10 460 353 203

times bigger than the probability for the latter.388

Conjecture 4.3. (Tower ground state) The complex quadratic fields K = Q(
√
d) with fun-389

damental discriminants d ∈ {−225 299,−343 380,−423 476,−486 264} of type F.7, resp. d ∈390

{−27 156,−241 160,−477 192,−484 804} of type F.11, resp. d = −291 220 of type F.12, resp.391

d ∈ {−167 064,−296 407,−317 747,−401 603} of type F.13, have 3-class field towers of exact length392

`3K = 3 with a suitable Schur σ-group in Theorem 4.2.393

For all types, F.7, F.11, F.12, F.13, the tower group H = G∞3 K has lo(H) = 20, cl(H) = 9,394

cc(H) = 11, ζ1H = (9, 9) or (9, 3, 3), γ22H = (27, 27, 9, 3, 3, 3) or (27, 9, 9, 9, 3, 3), and usually395

#Aut(H) = 2 · 325, rarely 2 · 326.396

Remark 4.5. Figure 5 shows one of the possible tree topologies, the one with the highest prob-397

ability, for the complex quadratic field K = Q(
√
−225 299) of type F.7, expressing the mutual398

location of G = G2
3K and H = G3

3K = G∞3 K, connected by the fork πG = π5H = P7 of type399

b.10.400

4.2.6. Schur σ-groups H with lo(H) = 26. Among the 10 members D of category three in Table401

5, three reveal an exceptional behaviour. They give rise to a total of 29, 30, 72, respectively, Schur402

σ-groups H of smallest order #H = 326. The identifiers of these non-metabelian groups H in the403

sense of the ANUPQ package [14], which is implemented in GAP [15] and MAGMA [18], are given404

in the following shape:405

(4.12) H = P7 −#4; `−#2; k −#4; j −#2; i−#4;h−#1; 1−#2; 1,

where ` is one of the counters 123, 128, 165 in category three of Table 5, k has the unique value406

12, 12, 29, in dependence on ` (the unique σ-group among the immediate descendants of step size407

2), j takes selected values in the range 1 ≤ j ≤ 18 for the counters 123, 128, resp. 1 ≤ j ≤ 27408

for the counter 165, 1 ≤ i ≤ 41 is a unique value in dependence on j, and h takes selected values409

in dependence on i. The number m of the metabelianization H/H ′′ ' G = P7 − #2;m from410

Theorem 3.2 is given by 56, 58, 55, in dependence on `.411

All the Schur σ-groups H share a common logarithmic order lo(H) = 26, class cl(H) = 11,412

coclass cc(H) = 15, derived length dl(H) = 4, and IPAD of second order,413

(4.13) τ (2)H = [12; (32; 231, (313)3)2, (13; 231, (221)3, (212)9)2].

However, Tables 18, 19, and 20, show that the centre, ζ1H, the abelian quotient invariants of414

the second derived subgroup, γ22H, the third derived subgroup, γ32H, and the order of the auto-415

morphism group #Aut(H) occur in three variants of Table 17. Since the third derived subgroup416

γ32H coincides with the last, resp. last but one, non-trivial lower central of H, the third derived417

quotient H/γ32H is isomorphic to the parent πH, resp. the grandparent π2H, of H.418
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Figure 5. Possible fork topology of K = Q(
√
−225 299)

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

14 348 907 315

43 046 721 316

129 140 163 317

387 420 489 318

1 162 261 467 319

3 486 784 401 320

?

Order 3n

fork πG = π5H = P7 = 〈37, 64〉
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child G = P7 −#2; 55
F.7

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

sibling π4H = P7 −#4; 196
F.7

child π3H = π4H −#2; 31
F.7
C
C
C
C
C
C
C
C
C
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C
C
C
C
C
C

child π2H = π3H −#4; 1
F.7

child πH = π2H −#1; 2
F.7
A
A
A
A
A
A
A
A

child H = πH −#2; 1
F.7

Topology Symbol:
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)
b
(
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)
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(
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)
F
(

4
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)
F
(

1
←

)
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(

2
←

)
F

Remark 4.6. Figure 6 shows another of the possible tree topologies, one with significantly lower419

probability, for the complex quadratic field K = Q(
√
−225 299) of type F.7, expressing the mutual420
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Table 17. Variants of ζ1H, γ22H/γ
3
2H, γ32H, and #Aut(H)

Variant I II III

ζ1H 22 22 212

γ22H/γ
3
2H 3323 3323 3224

γ32H 12 12 13

#Aut(H) 22 · 330 2 · 330 2 · 330

Table 18. Associations for P7 −#4; 123

j i h var.

3 21 1,14,17 I

5 20 2,14 II

8 37 2,4,9 III

9 38 19,24,26 III

11 20 7,12,16 I

13 11 2,4,9 III

14 40 1,5,9,12,13,17,20,24,25 III

15 21 1 II

17 21 9 II

18 19 9 II

Table 19. Associations for P7 −#4; 128

j i h var.

1 21 7,16 II,I

2 40 8,15,19 III

4 41 6,10,26 III

5 20 3,14 II,I

7 38 4,10,25 III

8 10 7,13,19 III

10 19 6,18 II,I

12 29 3,18,24 III

14 21 6,18 II,I

15 31 1,17,24 III

17 21 9,12 II,I

18 20 1,17 II,I

location of G = G2
3K, π2H = G3

3K, and H = G4
3K = G∞3 K, connected by the fork πG = π7H =421

P7 of type b.10. We point out that this would be the first example of a four-stage tower.422

However, according to the main result of [8] (the complex analogue of Formula (4.11)), the423

probability for the situation in Figure 5 is424

(2 · 325)−1 : (2 · 330)−1 = 35 = 243

times bigger than the probability for the situation in Figure 6.425
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Table 20. Associations for P7 −#4; 165

j i h var.

4 11 2,6,7,12,13,17,19,23,27 III

5 41 1,18,23 II

6 41 12,14,16 III

8 31 11,13,18 III

9 31 6,11,25 II

10 37 12,14,16 III

11 40 1,18,23 II

16 29 8,13,21 II

17 32 3,5,7 III

18 5 2,6,7,12,13,17,19,23,27 III

19 38 1,6,8 III

20 14 3,4,8,10,14,18,20,24,25 III

21 41 1,18,23 II

22 37 2,16,24 II

23 13 3,4,8,10,14,18,20,24,25 III

24 40 3,5,7 III

4.2.7. Schur σ-groups H with lo(H) = 23. There do not arise any exceptions among the 8 members426

D of type F.11 and category three in Table 8.427

However, among the 16 members D of category three in both Tables 11 (type F.12) and 14428

(type F.13), two reveal an exceptional behaviour.429

Remark 4.7. (Open problems No. 2)430

We were unable to find Schur σ-groups among the descendants of P7 −#4; ` with ` ∈ {157, 160},431

type F.12, and with ` ∈ {112, 115}, type F.13. They all belong to category three.432

Even more annoying, we were unable to find any Schur σ-groups among the descendants of the433

numerous roots in category one and two of the Tables 5, 8, 11, and 14.434

4.2.8. The cover of sporadic groups of coclass 6. Finally we celebrate our priority in discovering the435

smallest non-metabelian σ-groups H with relation rank d2H = 2 (Schur σ-groups) [37], which are436

contestants for 3-class tower groups G∞3 K of complex quadratic fields K with G = G2
3K ' H/H ′′437

of elevated coclass cc(G) = 6.438

Exemplarily, we restrict our investigations to the transfer kernel type F.11. The crucial idea439

how to start the path from the mandatory fork P7 to the Schur σ-group H was inspired by the440

symmetry of the topology symbol around the fork (independently of step sizes):441

F

(
2

→

)
b

(
2

→

)
b

(
2

→

)
b

(
4

←

)
b

(
2

←

)
b

(
4

←

)
F . . . ,

which suggests that two vertices with type b.10 must be found on the path before a chain of442

vertices with type F.11 leads to the leaf H.443

Indeed, we found two descendants of step size s = 4 of the fork P7 where paths of the desired444

shape can be constructed as described in the Tables 21 and 22. They give rise to a total of445

4 · 18 · 3 = 216 Schur σ-groups H of smallest order #H = 329, each. The identifiers of these446

non-metabelian groups H in the sense of the ANUPQ package [14], which is implemented in GAP447

[15] and MAGMA [18], are given in the following shape:448

(4.14) H = P7 −#4; `−#2; k −#4; j −#2; i−#4;h−#1; g −#2; f −#1; e−#2; 1,
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Figure 6. Another possible fork topology of K = Q(
√
−225 299)
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where (`, k) is one of the pairs (148, 11), (179, 11), j and i take the unique values in the tables, h449

is restricted to 18 values in dependence on (`, j), g takes a unique value in dependence on (`, j, h),450
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f uniformly runs through 1 ≤ f ≤ 3, and e takes a unique value in dependence on (`, j, h, f). The451

number m of the metabelianization H/H ′′ ' G = P11 −#2;m from Theorem 3.3 is also given by452

the tables, in dependence on j.453

Table 21. Associations for P7 −#4; 148−#2; 11

j i h m

1 40 40

18 40 42

33 32 40

35 29 2,3,4,5,7,9,10,12,14,15,16,17,19,20,22,24,26,27 42

Table 22. Associations for P7 −#4; 179−#2; 11

j i h m

1 40 40

18 40 42

33 32 40

35 29 2,3,4,6,7,8,10,11,14,15,16,18,19,21,22,23,26,27 42

All the Schur σ-groups H share a common logarithmic order lo(H) = 29, class cl(H) = 13,454

coclass cc(H) = 16, derived length dl(H) = 3, and IPAD of second order,455

(4.15) τ (2)H = [12; (43; 332, (5212)3), (43; 332, (4212)3), (13; 332, (221)3, (212)9)2].

Remark 4.8. Figure 7 shows one of the possible tree topologies for the complex quadratic field456

K = Q(
√
−4 838 891) of type F.11, expressing the mutual location of G = G2

3K and H = G3
3K =457

G∞3 K, connected by the fork π3G = π9H = P7 of type b.10.458

Remark 4.9. (Open problems No. 3)459

We intend another section § 3.3 after the section § 3.2 on sporadic vertices outside of coclass trees.460

In section § 3.3 we shall explore periodic infinite sequences of vertices on coclass trees, in particular461

of coclass 4, where numerous arithmetical realizations are known. Proceeding in this manner, we462

shall encounter three new types d.19, d.23, d.25, which act like a scaffold or struts for type F.463

However, the central fork will remain at P7 = 〈37, 64〉 of type b.10.464

In § 4.2.6 on exceptional cases of type F.7, it turned out that the iterated IPAD of second order465

is not able to distinguish between Schur σ-groups H of lo(H) = 20, dl(H) = 3, and lo(H) = 26,466

dl(H) = 4, since the Formulas (4.4) and (4.13) are identical. So the length `3K ≥ 3 of the 3-class467

tower of complex quadratic fields in the tower ground state remains unknown.468

Therefore, we hope that it will be possible to show that the numerous excited tower states469

which occur in the Tables 2 and 3 are realized exclusively by Schur σ-groups H with derived470

length dl(H) ≥ 4. This would prove the long desired `3K ≥ 4 for K = Q(
√
d) with d ∈471

{−124 363,−260 515,−160 403,−224 580}, and d ∈ {−2 383 059,−5 765 812}.472
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Figure 7. Possible fork topology of K = Q(
√
−4 838 891)

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

14 348 907 315

43 046 721 316

129 140 163 317

387 420 489 318

1 162 261 467 319
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94 143 178 827 323

282 429 536 481 324

847 288 609 443 325

2 541 865 828 329 326

7 625 597 484 987 327

22 876 792 454 961 328

68 630 377 364 883 329

?
Order 3n

fork π3G = π9H = P7 = 〈37, 64〉
b.10
q
�
�
�
�
�q

child π2G = P7 −#2; 33
b.10�

�
�
�
�q

child πG = π2G−#2; 25
b.10

q
child G = πG−#2; 42

F.11

C
C
C
C
C
C
C
C
CCchild
π8H = P7 −#4; 179
b.10

child
π7H = π8H −#2; 11
b.10C
C
C
C
C
C
C
C
CC4∗

child π6H = π7H −#4; 35
F.11

child π5H = π6H −#2; 29
F.11C
C
C
C
C
C
C
C
CC18∗

child π4H = π5H −#4; 2
F.11

child π3H = π4H −#1; 4
F.11A
A
A
A
A3∗

child π2H = π3H −#2; 1 . . . 3
F.11

child πH = π2H −#1; 1
F.11A
A
A
A
A

child H = πH −#2; 1
F.11

Topology Symbol:

F
[(

2
→

)
b
]3 ( 4
←

)
b
(

2
←

)
b
(

4
←

)
F
(

2
←

)
F
(

4
←

)
F
[(

1
←

)
F
(

2
←

)
F
]2
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