Diskriminante
|
3-Klassengruppe von
|
|
Kohomologie-
|
Kapitulations-
|
Quanten-
|
d
|
K
|
L4
|
L1
|
L2
|
L3
|
N4
|
N1
|
N2
|
N3
|
N*4
|
ε
|
Typ
|
Art
|
Gruppe, G32(K)
|
d > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
4-fach total ↑
|
783689
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
(9,9,3)
|
1
|
(αααα)
|
a.1 (000;0) ↑
|
< 729,79 >↓
|
626264
|
(9,3)
|
3
|
9
|
3
|
3
|
(3,3,3)
|
(9,9,3)
|
(9,3)
|
(9,3)
|
(9,9,3)
|
2
|
(αααα)
|
a.1 (000;0) ↑
|
< 729,84 >↓
|
1064201
|
(9,3)
|
3
|
9
|
3
|
3
|
(3,3,3)
|
(9,9,3)
|
(9,3)
|
(9,3)
|
(27,9,3)
|
2
|
(αααα)
|
a.1 (000;0) ↑
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3-fach total
|
529393
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
1
|
(δααα)
|
b.2 (000;1)
|
< 243,16 >
|
700313
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
(9,3,3)
|
1
|
(δααα)
|
b.15 (000;4)
|
< 243,14 >↓
|
3763580
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
(3,3,3,3)
|
1
|
(δααα)
|
b.15 (000;4)
|
< 243,13 >↓
|
282461
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3)
|
(9,3,3)
|
(9,3)
|
(9,3)
|
(3,3,3)
|
2
|
(αδαα)
|
b.16 (400;0)
|
< 243,18 >
|
635909
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3)
|
(27,3)
|
(9,3)
|
(9,3)
|
(9,3)
|
1
|
(αδαα)
|
b.3 (100;0)
|
< 243,19..20 >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3-fach total ↑
|
1049305
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(3,3,3)
|
(9,3)
|
(9,3)
|
(9,9,3)
|
2
|
(δααα)
|
1327101
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,9)
|
(3,3,3)
|
(9,3)
|
(9,3)
|
(9,9,3)
|
2
|
(δααα)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3-fach partiell ↑
|
4335916
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,9,3)
|
1
|
(αδδδ)
|
2904493
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,9,3)
|
2
|
(αδδδ)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4-fach partiell
|
255973
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,3,3)
|
2
|
(δδδδ)
|
D.11 (423;2)
|
< 729,14..15 >
|
1893032
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,9,3)
|
1
|
(δδδδ)
|
E.12 (123;4)
|
< 729,17..18 >↓
|
1664444
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,3,3,3)
|
1
|
(δδδδ)
|
B.7 (111;4)
|
< 729,16|19 >↓
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4-fach partiell ↑
|
5062497
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,9)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,9,9)
|
2
|
(δδδδ)
|
C.4 (112;2) ↑
|
d < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
4-fach partiell
|
-3299
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,3,3)
|
2
|
|
D.11 (423;2)
|
< 729,14..15 >
|
-5703
|
(9,3)
|
3
|
3
|
3
|
3
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,9,3)
|
1
|
|
E.12 (123;4)
|
< 729,17..18 >↓
|
-54695
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,3,3,3)
|
1
|
|
B.7 (111;4)
|
< 729,16|19 >↓
|
-289704
|
(9,3)
|
3
|
3
|
3
|
3
|
(3,3,3,3)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(9,9,3,3,3)
|
4
|
|
A.20 (444;4)
|
< 729,9 >↓
|
|
|
|
|
|
|
|
|
|
|
|
|
|
angeregt
|
-11651
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,9,9)
|
2
|
|
D.10 (114;2) ↑
|
-31983
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(9,9,9)
|
1
|
|
D.6 (123;1) ↑
|
-38296
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(27,9,9)
|
1
|
|
E.12 (123;4) ↑
|
-42567
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,9)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(9,9,9)
|
2
|
|
C.4 (112;2) ↑
|
-48039
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(27,9,9)
|
2
|
|
B.2 (111;2) ↑
|
-64671
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(27,27,3,3,3)
|
4
|
|
A.20 (444;4) ↑
|
-129551
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,9)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(27,9,9)
|
2
|
|
B.2 (111;2) ↑
|
-150319
|
(9,3)
|
9
|
3
|
3
|
3
|
(27,9,3)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(9,9,3,3,3)
|
4
|
|
B.18 (144;4) ↑
|
-294983
|
(9,3)
|
9
|
3
|
3
|
3
|
(9,9,9)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(9,9,3,3,3)
|
4
|
|
B.18 (144;4) ↑
|
|
|
|
|
|
|
|
|
|
|
|
|
|
höher angeregt
|
-210164
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(27,27,9)
|
1
|
|
D.6 (123;1) ↑2
|
-248019
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(27,3)
|
(27,3)
|
(27,3)
|
(81,27,9)
|
1
|
|
E.12 (123;4) ↑2
|
-320968
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(27,27,9)
|
2
|
|
C.4 (112;2) ↑2
|
-367871
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(9,3,3)
|
(27,3)
|
(27,3)
|
(81,27,9)
|
2
|
|
B.2 (111;2) ↑2
|
-384139
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(27,27,3,3,3)
|
4
|
|
A.20 (444;4) ↑2
|
-389371
|
(9,3)
|
27
|
3
|
3
|
3
|
(81,27,3)
|
(9,3,3)
|
(9,3,3)
|
(9,3,3)
|
(81,81,3,3,3)
|
4
|
|
B.18 (144;4) ↑2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2-fach angeregt
|
-87979
|
(9,3)
|
9
|
9
|
3
|
3
|
(27,9,3)
|
(9,9,9)
|
(9,3,3)
|
(9,3,3)
|
(9,9,9,3,3)
|
4
|
|
D.17 (144;2) ↑↑
|
-89923
|
(9,3)
|
9
|
9
|
3
|
3
|
(27,9,3)
|
(9,9,9)
|
(9,3,3)
|
(9,3,3)
|
(27,9,9,3,3)
|
4
|
|
B.18 (144;4) ↑↑
|
-388615
|
(9,3)
|
9
|
9
|
3
|
3
|
(27,9,3)
|
(27,9,3)
|
(9,3,3)
|
(9,3,3)
|
(27,9,9,3,3)
|
4
|
|
B.19 (444;1) ↑↑
|
-416568
|
(9,3)
|
9
|
9
|
3
|
3
|
(27,9,3)
|
(27,9,3)
|
(9,3,3)
|
(9,3,3)
|
(27,27,9,9,3)
|
4
|
|
A.20 (444;4) ↑↑
|
-445960
|
(9,3)
|
9
|
9
|
3
|
3
|
(27,9,3)
|
(27,9,3)
|
(9,3,3)
|
(9,3,3)
|
(9,9,9,3,3)
|
4
|
|
D.17 (144;2) ↑↑
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3-fach angeregt
|
-121864
|
(9,3)
|
3
|
9
|
9
|
27
|
(3,3,3,3)
|
(27,9,3)
|
(9,9,9)
|
(81,27,3)
|
(27,27,9,9,3,3)
|
4
|
|
D.9 (112;4) ↑↑↑2
|
-172484
|
(9,3)
|
3
|
9
|
9
|
9
|
(3,3,3,3)
|
(27,9,3)
|
(27,9,3)
|
(27,9,3)
|
(9,9,9,9,3,3)
|
4
|
|
D.9 (112;4) ↑↑↑
|
-311316
|
(9,3)
|
3
|
9
|
9
|
9
|
(3,3,3,3)
|
(27,9,3)
|
(9,9,9)
|
(9,9,9)
|
(9,9,9,9,3,3)
|
4
|
|
D.16 (124;4) ↑↑↑
|
-425131
|
(9,3)
|
3
|
9
|
9
|
9
|
(3,3,3,3)
|
(27,9,3)
|
(27,9,3)
|
(27,9,3)
|
(9,9,9,3,3,3,3)
|
4
|
|
D.16 (124;4) ↑↑↑
|
|