Our Mission:
1. To advance European science
to the forefront
of international research
and to stabilize this position.
2. To strengthen cooperation
with international research centers:
-
Harish-Chandra Research Institute,
Allahabad, India
-
Washington and Lee University,
Lexington, Virginia, USA
-
Université Mohammed Premier,
Oujda, Morocco
-
Australian National University,
Canberra, Capital Territory
-
Aichi University of Education,
Nagoya, Japan
-
University of Calgary,
Alberta, Canada
International Conferences:
February 27 - 29, 2020:
3rd Int. Conf. on Mathematics and its Applications
Université Hassan II, Faculté des Sciences
Casablanca, Region Occidental, Morocco
Daniel C. Mayer's Invited Key Note:
Abstract
Pattern Recognition via Artin Transfers
Program
April 25 - 27, 2019:
Conference on Algebra, Number Theory and Their Applications
Université Mohammed Premier, Faculté des Sciences
Oujda, Region Oriental, Morocco
Daniel C. Mayer's 3 Invited Lectures:
1. Proving the Conjecture of Scholz
2. Differential principal factors
3. Pure Metacyclic Fields
January 21 - 25, 2019:
Asia-Australia Algebra Conference 2019
Western Sydney University, Parramatta City campus
Sydney, New South Wales, Australia
July 1 - 5, 2019:
31st Journées Arithmétiques
Istanbul University, Faculty of Science
JA 2019, Istanbul, Turkey
|
The aim of this succinct presentation:
-
Granting Worldwide Quick Access to Scientific Information
-
Reliable and Verifiable Contents by Citing Peer-Reviewed Papers as References
For quadratic number fields K with elementary 3-class group Cl3(K) of rank two,
the Transfer Kernel Type (TKT) κ, Transfer Target Type (TTT) τ,
Second 3-Class Group G2=Gal(F2/K) and 3-Tower Group G∞=Gal(F∞/K),
i.e. the essential invariants of the 3-class field tower K ≤ F1 ≤ F2 ≤…≤ F∞,
have been determined in a series of recent publications between 2012 and 2018.
In the sequel, absolute values of fundamental discriminants d are minimal, and
finite 3-groups are identified by their designation in the SmallGroups Database.
Imaginary Quadratic Fields, K=Q(d1/2), d<0
d
|
TKT
|
κ
|
τ
|
G2
|
G∞
|
Ref.
|
-3896
|
H.4
|
(4443)
|
[111,111,21,111]
|
〈729,45〉
|
〈6561,606〉
|
4.
|
-4027
|
D.10
|
(2241)
|
[21,21,111,21]
|
〈243,5〉
|
〈243,5〉
|
6.
|
-9748
|
E.9
|
(2231)
|
[32,21,21,21]
|
〈2187,302〉
|
〈6561,620〉
|
5.
|
|
|
|
or
|
〈2187,306〉
|
〈6561,624〉
|
|
-12131
|
D.5
|
(4224)
|
[111,21,111,21]
|
〈243,7〉
|
〈243,7〉
|
6.
|
-15544
|
E.6
|
(1313)
|
[32,21,111,21]
|
〈2187,288〉
|
〈6561,616〉
|
4.
|
-16627
|
E.14
|
(2313)
|
[32,21,111,21]
|
〈2187,289〉
|
〈6561,617〉
|
4.
|
|
|
|
or
|
〈2187,290〉
|
〈6561,618〉
|
|
-34867
|
E.8
|
(1231)
|
[32,21,21,21]
|
〈2187,304〉
|
〈6561,622〉
|
4.
|
Real Quadratic Fields, K=Q(d1/2), d>0
d
|
TKT
|
κ
|
τ
|
G2
|
G∞
|
Ref.
|
32009
|
a.3
|
(2000)
|
[21,11,11,11]
|
〈81,8〉
|
〈81,8〉
|
6.
|
62501
|
a.1
|
(0000)
|
[22,11,11,11]
|
〈729,99〉
|
〈729,99〉
|
1.
|
72329
|
a.2
|
(1000)
|
[21,11,11,11]
|
〈81,10〉
|
〈81,10〉
|
6.
|
142097
|
a.3
|
(2000)
|
[111,11,11,11]
|
〈81,7〉
|
〈81,7〉
|
6.
|
152949
|
a.1
|
(0000)
|
[22,11,11,11]
|
〈729,100〉
|
〈729,100〉
|
1.
|
214712
|
G.19
|
(4321)
|
[21,21,21,21]
|
〈729,57〉
|
〈2187,311〉
|
2.
|
252977
|
a.1
|
(0000)
|
[22,11,11,11]
|
〈729,101〉
|
〈729,101〉
|
1.
|
342664
|
E.9
|
(2231)
|
[32,21,21,21]
|
〈2187,302〉
|
〈6561,620〉
|
2.
|
|
|
|
or
|
〈2187,306〉
|
〈6561,624〉
|
|
494236
|
a.3↑
|
(2000)
|
[32,11,11,11]
|
〈729,97〉
|
〈729,97〉
|
6.
|
|
|
|
or
|
〈729,98〉
|
〈729,98〉
|
|
534824
|
c.18
|
(0313)
|
[22,21,111,21]
|
〈729,49〉
|
〈2187,291〉
|
3.
|
540365
|
c.21
|
(0231)
|
[22,21,21,21]
|
〈729,54〉
|
〈2187,307〉
|
3.
|
|
|
|
|
or
|
〈2187,308〉
|
|
790085
|
a.2↑
|
(1000)
|
[32,11,11,11]
|
〈729,96〉
|
〈729,96〉
|
6.
|
957013
|
H.4
|
(4443)
|
[111,111,21,111]
|
〈729,45〉
|
〈2187,273〉
|
2.
|
2905160
|
a.1↑
|
(0000)
|
[33,11,11,11]
|
〈6561,2227〉
|
〈6561,2227〉
|
1.
|
3918837
|
E.14
|
(2313)
|
[32,21,111,21]
|
〈2187,289〉
|
〈2187,289〉
|
2.
|
|
|
|
or
|
〈2187,290〉
|
〈2187,290〉
|
|
4760877
|
E.9
|
(2231)
|
[32,21,21,21]
|
〈2187,302〉
|
〈2187,302〉
|
2.
|
|
|
|
or
|
〈2187,306〉
|
〈2187,306〉
|
|
5264069
|
E.6
|
(1313)
|
[32,21,111,21]
|
〈2187,288〉
|
〈6561,616〉
|
2.
|
6098360
|
E.8
|
(1231)
|
[32,21,21,21]
|
〈2187,304〉
|
〈6561,622〉
|
2.
|
7153097
|
E.6
|
(1313)
|
[32,21,111,21]
|
〈2187,288〉
|
〈2187,288〉
|
2.
|
8632716
|
E.8
|
(1231)
|
[32,21,21,21]
|
〈2187,304〉
|
〈2187,304〉
|
2.
|
9433849
|
E.14
|
(2313)
|
[32,21,111,21]
|
〈2187,289〉
|
〈6561,617〉
|
2.
|
|
|
|
or
|
〈2187,290〉
|
〈6561,618〉
|
|
10200108
|
a.3↑↑
|
(2000)
|
[43,11,11,11]
|
〈6561,2223〉
|
〈6561,2223〉
|
1.
|
|
|
|
or
|
〈6561,2224〉
|
〈6561,2224〉
|
|
10399596
|
a.1↑
|
(0000)
|
[33,11,11,11]
|
〈6561,2225〉
|
〈6561,2225〉
|
1.
|
14458876
|
a.2↑↑
|
(1000)
|
[43,11,11,11]
|
〈6561,2222〉
|
〈6561,2222〉
|
1.
|
27780297
|
a.1↑
|
(0000)
|
[33,11,11,11]
|
〈6561,2226〉
|
〈6561,2226〉
|
1.
|
References:
-
D. C. Mayer,
Deep transfers of p-class tower groups,
J. Appl. Math. Phys.
6
(2018),
no. 1,
36-50,
DOI 10.4236/jamp.2018.61005.
-
D. C. Mayer,
Criteria for three-stage towers of p-class fields,
Adv. Pure Math.
7
(2017),
no. 2,
135-179,
DOI 10.4236/apm.2017.72008.
-
D. C. Mayer,
New number fields with known p-class tower,
Tatra Mt. Math. Pub.
64
(2015),
21-57,
DOI 10.1515/tmmp-2015-0040.
-
D. C. Mayer,
Index-p abelianization data of p-class tower groups,
Adv. Pure Math.
5
(2015)
no. 5,
286-313,
DOI 10.4236/apm.2015.55029.
-
M. R. Bush and D. C. Mayer,
3-class field towers of exact length 3,
J. Number Theory
147
(2015),
766-777,
DOI 10.1016/j.jnt.2014.08.010.
-
D. C. Mayer,
Principalization algorithm via class group structure,
J. Théor. Nombres Bordeaux
26
(2014),
no. 2,
415-464,
DOI 10.5802/jtnb.874.
-
D. C. Mayer,
The distribution of second p-class groups on coclass graphs,
J. Théor. Nombres Bordeaux
25
(2013),
no. 2,
401-456,
DOI 10.5802/jtnb.842.
-
D. C. Mayer,
Transfers of metabelian p-groups,
Monatsh. Math.
166
(2012),
no. 3-4,
467-495,
DOI 10.1007/s00605-010-0277-x.
-
D. C. Mayer,
The second p-class group of a number field,
Int. J. Number Theory
8
(2012),
no. 2,
471-505,
DOI 10.1142/S179304211250025X.
|
|
Principal Investigator and
Project Leader of several
International Scientific Research Lines:
Supported by the
Austrian Science Fund (FWF)
J0497-PHY and P 26008-N25
and by the
Research Executive Agency of the
European Union (EUREA)
Our Services to the Mathematical Community:
|