
METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE (9, 3)

DANIEL C. MAYER

Abstract. Presentations of metabelian 3-groups G with abelianisation G/G′ of type (9, 3) are

used to determine explicit expressions for the transfers Vi from these groups to their maximal

normal subgroups Mi, and to calculate the transfer kernels ker(Vi) in G/G′ and the structure
of the transfer targets Mi/M

′
i , for 1 ≤ i ≤ 4.

1. Introduction

We consider metabelian 3-groups G = 〈x, y〉 with two generators satisfying x9 ∈ G′ and y3 ∈ G′
and commutator quotient group G/G′ of type (9, 3). Generally, such a group possesses
• four normal subgroups of index 9,

M̃1 = 〈y,G′〉, M̃2 = 〈x3y,G′〉, M̃3 = 〈x3y−1, G′〉, M̃4 = 〈x3, G′〉,
• and four maximal normal subgroups of index 3,

M1 = 〈x,G′〉, M2 = 〈xy,G′〉, M3 = 〈xy−1, G′〉, M4 = 〈x3, y,G′〉.

We use the subscript 4 to indicate that for M4 =
∏4

i=1 M̃i the factor group M4/G
′ = 〈x3, y〉 is

bicyclic of type (3, 3), whereas Mi/G
′ is cyclic of order 9, for 1 ≤ i ≤ 3, and that M̃4 = ∩4i=1Mi =

Φ(G) = G3G′ coincides with the Frattini subgroup of G, whereas M̃i is only contained in M4, for
1 ≤ i ≤ 3.

Figure 1. Double diamond head of a group G with G/G′ of type (9, 3)
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2. Common formulas for 2-generator groups of small class

Let G = 〈x, y〉 be a group with two generators x, y. Define the main commutator by
s2 = [y, x] ∈ γ2(G) and the threefold commutators by s3 = [s2, x], t3 = [s2, y] ∈ γ3(G).
Then yx = xy[y, x] = xys2, s2x = xs2[s2, x] = xs2s3, and s2y = ys2[s2, y] = ys2t3.

If G is metabelian, then

[s−12 , x] = [s2, x]−s
−1
2 = s

−s−1
2

3 = s−13 , [s−12 , y] = [s2, y]−s
−1
2 = t

−s−1
2

3 = t−13 ,

and [s−12 , y−1] = [s−12 , y]−y
−1

= (t−13 )−y
−1

= ty
−1

3 = t3, if t3 lies in the centre ζ1(G).

Consequently, [y−1, x] = [y, x]−y
−1

= s−y
−1

2 = (s−12 )y
−1

= s−12 [s−12 , y−1] = s−12 t3.
After this preliminary commutator calculus, we prove two formulas for 3rd powers of products

of the generators of a metabelian 2-generator group G, now assuming that s3, t3 belong to the
centre ζ1(G).

(xy)3 = x3y3s32s3t
5
3,(1)

(xy−1)3 = x3y−3s−32 s−13 t83.(2)

Proof. (xy)3 = xyxyxy = xxys2xys2y = x2yxs2s3ys2y = x2xys2s2ys2ys3 = x3ys2ys2t3ys2t3s3 =
= x3yys2t3ys2t3s2s3t

2
3 = x3y2s2ys

2
2s3t

4
3 = x3y2ys2t3s

2
2s3t

4
3 = x3y3s32s3t

5
3

and (xy−1)3 = xy−1xy−1xy−1 = xxy−1[y−1, x]xy−1[y−1, x]y−1 = x2y−1s−12 t3xy
−1s−12 t3y

−1 =
= x2y−1xs−12 [s−12 , x]y−1y−1s−12 [s−12 , y−1]t23 = x2xy−1s−12 t3s

−1
2 s−13 y−1y−1s−12 t3t

2
3 =

= x3y−1s−12 y−1s−12 t3s
−1
3 y−1s−12 t43 = x3y−1y−1s−12 t3s

−1
2 y−1s−12 s−13 t53 =

= x3y−2s−12 y−1s−12 t3s
−1
2 s−13 t63 = x3y−2y−1s−12 t3s

−2
2 s−13 t73 = x3y−3s−32 s−13 t83. �

3. S3-double orbits of punctured transfer kernel types

The transfer Vi (Verlagerung) from G to its maximal subgroup Mi is given by

(3) Vi = VG,Mi
: G/G′ →Mi/M

′
i , g 7→

{
g3, if g ∈ G \Mi ,

gS3(h), if g ∈Mi ,

where S3(h) = 1 + h + h2 ∈ Z[G], with an arbitrary element h ∈ G \Mi, denotes the third trace
element (Spur) in the group ring, acting as a symbolic exponent.

There are five possibilities for the kernel of Vi, for each 1 ≤ i ≤ 4. Either ker(Vi) = M̃j/G
′,

for some 1 ≤ j ≤ 4, and we denote the one-dimensional transfer by the singulet κ(i) = j,
or ker(Vi) = M4/G

′, and we denote the two-dimensional transfer by κ(i) = 0. Due to the
distinguished role of the subscript 4, we combine the singulets to form a multiplet

κ = ( (κ(1),κ(2),κ(3)); κ(4)) ∈ [0, 4]3 × [0, 4]

which we call the punctured transfer kernel type (TKT) of the group G with respect to the selected
generators.

To be independent from the choice of generators and the order of M1,M2,M3 and M̃1, M̃2, M̃3,
we define the double orbit

κS3×S3 = {σ̃ ◦ κ ◦ τ̂ | σ, τ ∈ S3}
of κ under the operation of S3 × S3 as an isomorphism invariant κ(G) of G. Here, σ̃ denotes the
extension of σ from [1, 3] to [0, 4] which fixes 0 and 4 and τ̂ denotes the extension of τ from [1, 3]
to [1, 4] which fixes 4.

Two further isomorphism invariants of G are µ = µ(G) = #{1 ≤ i ≤ 4 | κ(i) = 4} and the
number of two-dimensional transfers ν = ν(G) = #{1 ≤ i ≤ 4 | κ(i) = 0}.
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4. Combinatorially possible punctured transfer kernel types

In this section, we arrange all combinatorially possible S3-double orbits of the 54 punctured
quadruplets κ ∈ [0, 4]3×[0, 4] by increasing invariant 0 ≤ µ ≤ 4 and cardinality of the image. Table
1 shows the punctured quadruplets with invariant ν = 0 and Table 2 the punctured quadruplets
with invariant 1 ≤ ν ≤ 4 as possible punctured transfer kernel types of 3-groups G with G/G′ of
type (9, 3), resp. punctured principalisation types of number fields K with 3-class group Cl3(K) of
type (9, 3), according to Artin’s reciprocity law [15]. The double orbits are divided into sections,
denoted by letters, and identified by ordinal numbers.

We denote by o(κ) = (|κ−1{i}|)0≤i≤4 the family of occupation numbers of the selected double
orbit representative κ and by κ the quadruplet of Taussky’s conditions [26] associated with κ.

If a double orbit κS3×S3 can be realised as a punctured transfer kernel type κ(G), then a
suitable 3-group G is given in the notation of James [12], using Hall’s isoclinism families [11].

Table 1 gives a coarse classification into sections A to E, an identification by ordinal numbers
1 to 20, and a set theoretical characterisation.

Table 1. The 20 S3-double orbits of κ ∈ [1, 4]4 with ν = 0

repres. occupation Taussky charact. cardinality realising

Sec. Nr. of dbl.orb. numbers cond. property of dbl.orb. 3-group

κ o(κ) κ |κS3×S3 | G

A 1 (1111) (04000) (BBBA) constant 3 Φ2(31)

B 2 (1112) (03100) (BBBA) nearly 6 ???

B 3 (1121) (03100) (BBBA) constant 18

C 4 (1122) (02200) (BBBA) 18 ???

D 5 (1123) (02110) (BBBA) 18

D 6 (1231) (02110) (BBBA) 18 ???

B 7 (1114) (03001) (BBBA) nearly 3 Φ6(321)b1,1 ,Φ6(321)b1,2
B 8 (1141) (03001) (BBAA) constant 9

D 9 (1124) (02101) (BBBA) 18 ???

D 10 (1142) (02101) (BBAA) 18 ???

D 11 (1241) (02101) (BBAA) 36 Φ6(321)a1
,Φ6(321)a2

E 12 (1234) (01111) (BBBA) per- 6 Φ6(321)b2,1 ,Φ6(321)b2,2
E 13 (1243) (01111) (BBAA) mutation 18

C 14 (1144) (02002) (BBAA) 9

C 15 (1441) (02002) (BAAA) 9

D 16 (1244) (01102) (BBAA) 18 ???

D 17 (1442) (01102) (BAAA) 18 ???

B 18 (1444) (01003) (BAAA) nearly 9 ???

B 19 (4441) (01003) (AAAA) constant 3 ???

A 20 (4444) (00004) (AAAA) constant 1 Φ6(2212)g,Φ2(22),Φ8(32)

Total number: 256
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Table 2 gives a coarse classification into sections a to e, an identification by ordinal numbers 1
to 32, and a set theoretical characterisation.

Table 2. The 32 S3-double orbits of κ ∈ [0, 4]4 \ [1, 4]4 with 1 ≤ ν ≤ 4

repres. occupation Taussky charact. cardinality realising

Sec. Nr. of dbl.orb. numbers cond. property of dbl.orb. 3-group

κ o(κ) κ |κS3×S3 | G

a 1 (0000) (40000) (AAAA) constant 1 Φ2(212)c,Φ3(213)d,Φ3(213)e

b 2 (0001) (31000) (AAAA) nearly 3 Φ3(312)a

b 3 (0010) (31000) (AABA) constant 9 Φ3(312)b1 ,Φ3(312)b2
c 4 (0011) (22000) (AABA) 9

c 5 (0110) (22000) (ABBA) 9

d 6 (0012) (21100) (AABA) 18

d 7 (0120) (21100) (ABBA) 18

b 8 (0111) (13000) (ABBA) nearly 9

b 9 (1110) (13000) (BBBA) constant 3

d 10 (0112) (12100) (ABBA) 18 Φ6(313)a

d 11 (0121) (12100) (ABBA) 36

d 12 (1120) (12100) (BBBA) 18

e 13 (0123) (11110) (ABBA) per- 18

e 14 (1230) (11110) (BBBA) mutation 6 Φ6(313)b1 ,Φ6(313)b2
b 15 (0004) (30001) (AAAA) nearly 1 Φ3(221)b1 ,Φ3(221)b2 ,Φ6(214)d

b 16 (0040) (30001) (AAAA) constant 3 Φ3(221)a

d 17 (0014) (21001) (AABA) 9

d 18 (0041) (21001) (AAAA) 9

d 19 (0140) (21001) (ABAA) 18

d 20 (0114) (12001) (ABBA) 9

d 21 (0141) (12001) (ABAA) 18

d 22 (1140) (12001) (BBAA) 9

e 23 (0124) (11101) (ABBA) per- 18

e 24 (0142) (11101) (ABAA) muta- 36

e 25 (1240) (11101) (BBAA) tion 18

c 26 (0044) (20002) (AAAA) 3

c 27 (0440) (20002) (AAAA) 3 Φ6(2212)h1

d 28 (0144) (11002) (ABAA) 18

d 29 (0441) (11002) (AAAA) 9

d 30 (1440) (11002) (BAAA) 9

b 31 (0444) (10003) (AAAA) nearly 3 Φ6(2212)h2

b 32 (4440) (10003) (AAAA) constant 1

Total number: 625− 256 = 369
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5. Actual realisation of punctured transfer kernel types

In this section, we characterise all punctured quadruplets κ ∈ [0, 4]4 which can be realised
as punctured transfer kernel types of metabelian 3-groups G with abelianisation G/G′ of type
(9, 3). For this purpose we assume that G occurs as the second 3-class group Gal(F2

3(K)|K) [16]
of an algebraic number field K with 3-class group Cl3(K) of type (9, 3). Then the structure of the
abelianisations Mi/M

′
i of the maximal normal subgroups Mi of G, which we call the transfer target

type (TTT) τ of G, is identical with the structure of the 3-class groups Cl3(Ni) of the unramified

cyclic cubic extensions Ni|K, for 1 ≤ i ≤ 4. Further, the structure of the abelianisation M̃4/M̃
′
4 of

the distinguished normal subgroup M̃4 = Φ(G) of index 9 in G is identical with the structure of the

3-class group Cl3(Ñ4) of the Frattini extension, the unique unramified bicyclic bicubic extension

Ñ4|K. The isomorphism invariant ε = ε(G) denotes the number of 3-class groups Cl3(Ni) of

3-rank at least 3. In the case of a quadratic base field K = Q(
√
D) with discriminant D, the

3-class numbers hi = h3(Li) of the non-Galois absolutely cubic subfields Li of the Ni can be used
additionally for the characterisation.

Table 3 lists the 13 isomorphism classes of 3-groups G with abelianisation G/G′ of type (9, 3)
in the isoclinism family Φ6 [19]. They form branch 1 of this family, whence their order, nilpotency
class, and coclass [14] are given by |G| = 36, cl(G) = 3, cc(G) = 3, whereas the stem groups of
Φ6 have |G| = 35, cl(G) = 3, cc(G) = 2. Generally, the nilpotency class cl(G) = 3 is a family
invariant of Φ6. ↓ denotes a descendant.

Table 3. TKT and TTT of 3-groups in branch 1 of isoclinism family Φ6 or descendants

type κ h1 h2 Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε Cl3(Ñ4) min. |D| group

D.11 (4232) 3 3 (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3) |−3 299| Φ6(321)a1

D.11 (4322) 3 3 (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3) 255 973 Φ6(321)a2

B.7 (1114) 3 3 (27, 3) (27, 3) (27, 3) (3, 3, 3, 3) 1 (9, 3, 3, 3) |−54 695| Φ6(321)b1,1 ↓
B.7 (1114) 3 3 (27, 3) (27, 3) (27, 3) (3, 3, 3, 3) 1 (9, 3, 3, 3) 1 664 444 Φ6(321)b1,2 ↓
E.12 (1234) 3 3 (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 9, 3) |−5 703| Φ6(321)b2,1 ↓
E.12 (1324) 3 3 (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 9, 3) 1 893 032 Φ6(321)b2,2 ↓
d.10 (0112) (9, 3, 3) (27, 3) (27, 3) (9, 3, 3) 2 (9, 3, 3) Φ6(313)a

e.14 (1320) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3) Φ6(313)b1
e.14 (1230) (27, 3) (27, 3) (27, 3) (9, 3, 3) 1 (9, 3, 3) Φ6(313)b2
A.20 (4444) 3 3 (9, 3, 3) (9, 3, 3) (9, 3, 3) (3, 3, 3, 3) 4 (9, 9, 3, 3, 3) |−289 704| Φ6(2212)g ↓
c.27 (0440) (9, 3, 3) (9, 3, 3) (9, 3, 3) (9, 3, 3) 4 (3, 3, 3, 3) Φ6(2212)h1

b.31 (0444) (9, 3, 3) (9, 3, 3) (9, 3, 3) (9, 3, 3) 4 (3, 3, 3, 3) Φ6(2212)h2

b.15 (0004) (9, 3, 3) (9, 3, 3) (9, 3, 3) (3, 3, 3, 3) 4 (3, 3, 3, 3) Φ6(214)d
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In Table 4 we give the 12 isomorphism classes of 3-groups G with abelianisation G/G′ of type
(9, 3) in the isoclinism families Φ2, Φ3, and Φ8. For Φ2, they form branch 1 of this family, whence
their order and coclass are given by |G| = 34, cc(G) = 2, whereas the stem groups of Φ2 have
|G| = 33, cc(G) = 1. The class cl(G) = 2 is a family invariant of Φ2. For Φ3, they form branch 1
of this family, whence their order and coclass are given by |G| = 35, cc(G) = 2, whereas the stem
groups of Φ3 have |G| = 34, cc(G) = 1. The class cl(G) = 3 is a family invariant of Φ3. Finally,
the stem of Φ8 consists of a unique isomorphism class with |G| = 35, cl(G) = 3, cc(G) = 2.
↓ denotes a descendant.

Table 4. TKT and TTT of 3-groups in isoclinism families Φ2,Φ3,Φ8 or descendants

type κ h1 h2 Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε Cl3(Ñ4) min. |D| group

A.1 (1111) (27) (27) (27) (9, 3) 0 (9) Φ2(31)

A.20 (4444) (9, 3) (9, 3) (9, 3) (9, 3) 0 (3, 3) Φ2(22)

a.1 (0000) (9, 3) (9, 3) (9, 3) (3, 3, 3) 1 (3, 3) Φ2(212)c

b.2 (0001) 3 3 (9, 3) (9, 3) (9, 3) (9, 3, 3) 1 (9, 3) 529 393 Φ3(312)a

b.3 (1000) 3 3 (27, 3) (9, 3) (9, 3) (3, 3, 3) 1 (9, 3) 635 909 Φ3(312)b1
b.3 (1000) 3 3 (27, 3) (9, 3) (9, 3) (3, 3, 3) 1 (9, 3) 946 733 Φ3(312)b2
b.16 (4000) 3 3 (9, 3, 3) (9, 3) (9, 3) (3, 3, 3) 2 (3, 3, 3) 282 461 Φ3(221)a

b.15 (0004) 3 3 (9, 3) (9, 3) (9, 3) (3, 3, 3, 3) 1 (3, 3, 3, 3) 3 763 580 Φ3(221)b1 ↓
b.15 (0004) 3 3 (9, 3) (9, 3) (9, 3) (9, 3, 3) 1 (9, 3, 3) 700 313 Φ3(221)b2 ↓
a.1 (0000) 9 3 (9, 3) (9, 3) (9, 3) (9, 9, 3) 1 (9, 9, 3) 783 689 Φ3(213)d ↓
a.1 (0000) 9 3 (9, 9, 3) (9, 3) (9, 3) (3, 3, 3) 2 (9, 9, 3) 626 264 Φ3(213)e ↓
A.20 (4444) (9, 3) (9, 3) (9, 3) (9, 3) 0 (9, 3) Φ8(32)
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6. 3-groups of the first branch of isoclinism family Φ3

Generally, the p-groups G of isoclinism family Φ3 are characterized by the nilpotency class
cl(G) = 3 [12, p.618, 4.1]. Their common central quotient G/ζ1(G) is the extra special p-group
G3

0(0, 0) of order p3 and of exponent p [15, Thm.2.5]. For the 2-generator groups G = 〈x, y〉 in
Φ3, the structure of their lower central series (γj(G))j≥1 can be expressed by means of the main
commutator, s2 = [y, x] ∈ γ2(G) = [G,G], and the threefold commutator in γ3(G) = [γ2(G), G],

s3 =

{
[s2, x], if [s2, y] = 1,

[s2, y], if [s2, x] = 1.

The groups are metabelian with γ2(G) = 〈s2, s3〉 of type (p, p) and γ3(G) = 〈s3〉 cyclic of order p.
The 2-generator groups in the first branch of Φ3 have order |G| = p5, coclass cc(G) = 2 and

abelianization G/G′ of type (p2, p). If we select the generators of G = 〈x, y〉 such that xp
2 ∈ G′

and yp ∈ G′.
In the special case p = 3, the 4 maximal subgroups of G are given by

M1 = 〈x,G′〉, M2 = 〈xy,G′〉, M3 = 〈xy−1, G′〉, M4 = 〈x3, y,G′〉.
To calculate the transfer target type (TTT) τ(G), we need generators for the commutator

quotients of the maximal subgroups. According to [5, p.52, Lem.2.1], we have

M ′1 = [G′,M1] = (G′)x−1 = 〈sx−12 〉 = 〈[s2, x]〉 =

{
〈s3〉, if [s2, y] = 1,

1, if [s2, x] = 1,

and M1/M
′
1 = 〈x, s2, s3〉/〈s3〉 = 〈x, s2〉/〈s3〉, if [s2, y] = 1,

but M1/M
′
1 'M1 = 〈x, s2, s3〉, if [s2, x] = 1.

Since

sxy−12 = [s2, xy] = [s2, y][s2, x]y =

{
1 · sy3 = s3, if [s2, y] = 1,

s3 · 1y = s3, if [s2, x] = 1,

i.e. sxy−12 = s3 in any case, we have M ′2 = [G′,M2] = (G′)xy−1 = 〈sxy−12 〉 = 〈s3〉
and M2/M

′
2 = 〈xy, s2, s3〉/〈s3〉 = 〈xy, s2〉/〈s3〉.

Since

sxy
−1−1

2 = [s2, xy
−1] = [s2, y

−1][s2, x]y
−1

= [s2, y]−y
−1

[s2, x]y
−1

=

{
1−y

−1 · sy
−1

3 = s3, if [s2, y] = 1,

s−y
−1

3 · 1y−1

= s−13 , if [s2, x] = 1,

we have M ′3 = [G′,M3] = (G′)xy
−1−1 = 〈sxy

−1−1
2 〉 = 〈s3〉

and M3/M
′
3 = 〈xy−1, s2, s3〉/〈s3〉 = 〈xy−1, s2〉/〈s3〉, in any case.

Since M4/Φ(G) is cyclic and x3 ∈ ζ1(G), we have

M ′4 = [Φ(G),M4] = [G′,M4] = (G′)y−1 = 〈sy−12 〉 = 〈[s2, y]〉 =

{
1, if [s2, y] = 1,

〈s3〉, if [s2, x] = 1,

and M4/M
′
4 = 〈x3, y, s2, s3〉/〈s3〉 = 〈x3, y, s2〉/〈s3〉, if [s2, x] = 1,

but M4/M
′
4 'M4 = 〈x3, y, s2, s3〉, if [s2, y] = 1.

These formulas admit to give upper bounds for the 3-rank of the abelianisations. Whereas
M2/M

′
2 and M3/M

′
3 are at most of 3-rank 2, the 3-rank of M1/M

′
1 is bounded by 2, if [s2, y] = 1,

and by 3, if [s2, x] = 1. The biggest 3-rank 4 can occur for M4/M
′
4, if [s2, y] = 1, and is bounded

by 3, if [s2, x] = 1.



8 DANIEL C. MAYER

Since the source of all transfers Vi : G/G′ → Mi/M
′
i can be represented by the generators

as G/G′ = {xjy`G′ | 0 ≤ j < 9, 0 ≤ ` < 3}, the possible transfer kernels ker(Vi) are either of

dimension 1 (partial), M̃1/G
′ = {y`G′ | 0 ≤ ` < 3}, κ(i) = 1, or M̃2/G

′ = {x3`y`G′ | 0 ≤ ` < 3},
κ(i) = 2, or M̃3/G

′ = {x−3`y`G′ | 0 ≤ ` < 3}, κ(i) = 3, or M̃4/G
′ = {xjG′ | j = 0, 3, 6}, κ(i) = 4,

or of dimension 2 (total), M4/G
′ = {xjy`G′ | j = 0, 3, 6, 0 ≤ ` < 3}, κ(i) = 0.

To calculate the punctured transfer kernel type (TKT) κ(G), we need explicit expressions for
the transfers Vi = VG,Mi from G/G′ to the abelianisations of the maximal subgroups Mi/M

′
i ,

based on equation (3).
For our fixed arrangement of the maximal subgroups of G = 〈x, y〉, we have x ∈ M1 but

x /∈ M2,M3,M4 and y ∈ M4 but y /∈ M1,M2,M3. Consequently, the following transfer images
are powers, Vi(xG

′) = x3M ′i for 2 ≤ i ≤ 4 and Vi(yG
′) = y3M ′i for 1 ≤ i ≤ 3. However, for the

remaining transfer images we need a formula for the action of third trace elements as symbolic
exponents. According to [15, Thm.3.1,(6)], we have

V1(xG′) = xS3(y)M ′1 = x1+y+y2

M ′1 = x3[x, y]3[[x, y], y]M ′1 = x3s−32 [s−12 , y]M ′1 = x3s−32 [s2, y]−s
−1
2 M ′1 =

=

{
x3s−32 M ′1, if [s2, y] = 1,

x3s−32 s−13 M ′1, if [s2, x] = 1,

and V4(yG′) = yS3(x)M ′4 = y1+x+x2

M ′4 = y3[y, x]3[[y, x], x]M ′4 = y3s32[s2, x]M ′4 =

=

{
y3s32s3M

′
4, if [s2, y] = 1,

y3s32M
′
4, if [s2, x] = 1.

Summarised, Vi(x
jy`G′) = x3jy3`M ′i , if either 2 ≤ i ≤ 3 or i = 1, [s2, y] = 1 or i = 4,

[s2, x] = 1, but exceptionally V1(xjy`G′) = x3js−j3 y3`, if [s2, x] = 1 and thus M ′1 = 1, and
V4(xjy`G′) = x3jy3`s`3, if [s2, y] = 1 and thus M ′4 = 1.

To determine the transfer kernel we have to solve the equation Vi(x
jy`G′) = 1 ·M ′i with respect

to j and `.
For the standard case this can be done independently from the details of the presentation of

the group G. If either 2 ≤ i ≤ 3 or i = 1, [s2, y] = 1 or i = 4, [s2, x] = 1, then we have uniformly
M ′i = 〈s3〉 = γ3(G) and Vi(x

jy`G′) = x3jy3`M ′i = M ′i , i.e. x3jy3` ∈ 〈s3〉, implies 3 | j but admits
arbitrary `, since x9, y3 ∈ 〈s3〉, in any case. Consequently, κ(i) = 0, generally in the standard
case.

The exceptional cases, however, depend on the isomorphism class of the group G.
There are 8 isomorphism classes of 2-generator groups G = 〈x, y〉 in the first branch of Φ3

and table 5 gives 3 representatives for each isomorphism class in the notation of GAP 4.4 [10],
James [12, p.620, 4.5], and Ascione, Havas, Leedham-Green [3, p.272, 7] resp. [1, p.79, Fig.5.4].
A common feature of all 8 isomorphism classes are the relations s2 = [y, x], s32 = 1, s33 = 1 and we
only give the remaining relations for [s2, x], [s2, y], x9, and y3.

Table 5. Representatives of the 8 isomorphism classes in branch 1 of Φ3

GAP 4.4 James Ascione [s2, x] [s2, y] x9 y3

〈243, 20〉 Φ3(312)b1 B 1 s3 s−13 1

〈243, 19〉 Φ3(312)b2 C 1 s3 s3 1

〈243, 16〉 Φ3(312)a F s3 1 s3 s−13

〈243, 18〉 Φ3(221)a D 1 s3 1 s−13

〈243, 14〉 Φ3(221)b2 H s3 1 1 s3

〈243, 13〉 Φ3(221)b1 E s3 1 1 1

〈243, 15〉 Φ3(213)d G s3 1 1 s−13

〈243, 17〉 Φ3(213)e A 1 s3 1 1
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[25] O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346.

[26] O. Taussky, A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.

Naglergasse 53, 8010 Graz, Austria

E-mail address: algebraic.number.theory@algebra.at

URL: http://www.algebra.at


