METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE (9,3)

DANIEL C. MAYER

ABSTRACT. Presentations of metabelian 3-groups G with abelianisation G/G' of type (9,3) are used to determine explicit expressions for the transfers V_i from these groups to their maximal normal subgroups M_i , and to calculate the transfer kernels ker(V_i) in G/G' and the structure of the transfer targets M_i/M'_i , for $1 \le i \le 4$.

1. INTRODUCTION

We consider metabelian 3-groups $G = \langle x, y \rangle$ with two generators satisfying $x^9 \in G'$ and $y^3 \in G'$ and commutator quotient group G/G' of type (9,3). Generally, such a group possesses • four normal subgroups of index 9,

$$\tilde{M}_1 = \langle y, G' \rangle, \ \tilde{M}_2 = \langle x^3 y, G' \rangle, \ \tilde{M}_3 = \langle x^3 y^{-1}, G' \rangle, \ \tilde{M}_4 = \langle x^3, G' \rangle,$$

• and four maximal normal subgroups of index 3,

$$M_1 = \langle x, G' \rangle, \ M_2 = \langle xy, G' \rangle, \ M_3 = \langle xy^{-1}, G' \rangle, \ M_4 = \langle x^3, y, G' \rangle.$$

We use the subscript 4 to indicate that for $M_4 = \prod_{i=1}^4 \tilde{M}_i$ the factor group $M_4/G' = \langle x^3, y \rangle$ is bicyclic of type (3,3), whereas M_i/G' is cyclic of order 9, for $1 \le i \le 3$, and that $\tilde{M}_4 = \bigcap_{i=1}^4 M_i = \Phi(G) = G^3G'$ coincides with the Frattini subgroup of G, whereas \tilde{M}_i is only contained in M_4 , for $1 \le i \le 3$.

Date: October 02, 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20D15, Secondary 20F12, 20F14.

Key words and phrases. Metabelian 3-groups, abelianisation of type (9,3), transfers of 3-groups. Research supported by the Austrian Science Fund, Grant Nr. J0497-PHY.

2. Common formulas for 2-generator groups of small class

Let $G = \langle x, y \rangle$ be a group with two generators x, y. Define the main commutator by $s_2 = [y, x] \in \gamma_2(G)$ and the threefold commutators by $s_3 = [s_2, x], t_3 = [s_2, y] \in \gamma_3(G)$. Then $yx = xy[y, x] = xys_2, s_2x = xs_2[s_2, x] = xs_2s_3$, and $s_2y = ys_2[s_2, y] = ys_2t_3$. If G is metabelian, then

If G is metabelian, then $[s_2^{-1}, x] = [s_2, x]^{-s_2^{-1}} = s_3^{-s_2^{-1}} = s_3^{-1}, [s_2^{-1}, y] = [s_2, y]^{-s_2^{-1}} = t_3^{-s_2^{-1}} = t_3^{-1},$ and $[s_2^{-1}, y^{-1}] = [s_2^{-1}, y]^{-y^{-1}} = (t_3^{-1})^{-y^{-1}} = t_3^{y^{-1}} = t_3, \text{ if } t_3 \text{ lies in the centre } \zeta_1(G).$ Consequently, $[y^{-1}, x] = [y, x]^{-y^{-1}} = s_2^{-y^{-1}} = (s_2^{-1})^{y^{-1}} = s_2^{-1}[s_2^{-1}, y^{-1}] = s_2^{-1}t_3.$

After this preliminary commutator calculus, we prove two formulas for 3rd powers of products of the generators of a metabelian 2-generator group G, now assuming that s_3, t_3 belong to the centre $\zeta_1(G)$.

(1)
$$(xy)^3 = x^3y^3s_2^3s_3t_3^5,$$

(2)
$$(xy^{-1})^3 = x^3y^{-3}s_2^{-3}s_3^{-1}t_3^8.$$

 $\begin{array}{l} Proof. \ (xy)^3 = xyxyxy = xxys_2xys_2y = x^2yxs_2s_3ys_2y = x^2xys_2s_2ys_2ys_3 = x^3ys_2ys_2t_3ys_2t_3s_3 = x^3ys_2ys_2t_3ys_2t_3s_3t_3 = x^3yys_2t_3ys_2t_3s_2s_3t_3^2 = x^3y^2s_2ys_2^2s_3t_3^4 = x^3y^2ys_2t_3s_2^2s_3t_3^4 = x^3y^3s_2^3s_3t_3^5 \\ \text{and} \ (xy^{-1})^3 = xy^{-1}xy^{-1}xy^{-1} = xxy^{-1}[y^{-1}, x]xy^{-1}[y^{-1}, x]y^{-1} = x^2y^{-1}s_2^{-1}t_3xy^{-1}s_2^{-1}t_3y^{-1} = x^2y^{-1}xs_2^{-1}[s_2^{-1}, x]y^{-1}y^{-1}s_2^{-1}[s_2^{-1}, y^{-1}]t_3^2 = x^2xy^{-1}s_2^{-1}t_3s_2^{-1}s_3^{-1}y^{-1}y^{-1}s_2^{-1}t_3t_3^2 = x^3y^{-1}s_2^{-1}y^{-1}s_2^{-1}t_3s_3^{-1}y^{-1}s_2^{-1}t_3s_3^{-1}y^{-1}s_2^{-1}t_3s_2^{-1}y^{-1}s_2^{-1}s_3^{-1}s_5^{-1} = x^3y^{-2}s_2^{-1}y^{-1}s_2^{-1}t_3s_2^{-1}s_3^{-1}t_3^2 = x^3y^{-2}s_2^{-1}y^{-1}s_2^{-1}t_3s_2^{-1}s_3^{-1}t_3^2 = x^3y^{-2}s_2^{-1}y^{-1}s_2^{-1}t_3s_3^{-1}y^{-1}s_2^{-1}t_3s_2^{-1}y^{-1}s_2^{-1}s_3^{-1}t_3^{-1} = x^3y^{-2}s_2^{-1}y^{-1}s_2^{-1}t_3s_2^{-1}s_3^{-1}t_3^{-1}s_2^{-1}t_3s_2^{-1}s_3^{-1$

3. S_3 -double orbits of punctured transfer kernel types

The transfer V_i (Verlagerung) from G to its maximal subgroup M_i is given by

(3)
$$V_i = V_{G,M_i} : G/G' \to M_i/M'_i, \ g \mapsto \begin{cases} g^3, & \text{if } g \in G \setminus M_i \,, \\ g^{S_3(h)}, & \text{if } g \in M_i \,, \end{cases}$$

where $S_3(h) = 1 + h + h^2 \in \mathbb{Z}[G]$, with an arbitrary element $h \in G \setminus M_i$, denotes the third *trace* element (Spur) in the group ring, acting as a symbolic exponent.

There are five possibilities for the kernel of V_i , for each $1 \le i \le 4$. Either ker $(V_i) = \tilde{M}_j/G'$, for some $1 \le j \le 4$, and we denote the *one-dimensional* transfer by the singulet $\varkappa(i) = j$, or ker $(V_i) = M_4/G'$, and we denote the *two-dimensional* transfer by $\varkappa(i) = 0$. Due to the distinguished role of the subscript 4, we combine the singulets to form a multiplet

$$\varkappa = ((\varkappa(1), \varkappa(2), \varkappa(3)); \varkappa(4)) \in [0, 4]^3 \times [0, 4]$$

which we call the *punctured transfer kernel type* (TKT) of the group G with respect to the selected generators.

To be independent from the choice of generators and the order of M_1, M_2, M_3 and $\tilde{M}_1, \tilde{M}_2, \tilde{M}_3$, we define the *double orbit*

$$\varkappa^{S_3 \times S_3} = \{ \tilde{\sigma} \circ \varkappa \circ \hat{\tau} \mid \sigma, \tau \in S_3 \}$$

of \varkappa under the operation of $S_3 \times S_3$ as an isomorphism invariant $\varkappa(G)$ of G. Here, $\tilde{\sigma}$ denotes the extension of σ from [1,3] to [0,4] which fixes 0 and 4 and $\hat{\tau}$ denotes the extension of τ from [1,3] to [1,4] which fixes 4.

Two further isomorphism invariants of G are $\mu = \mu(G) = \#\{1 \le i \le 4 \mid \varkappa(i) = 4\}$ and the number of two-dimensional transfers $\nu = \nu(G) = \#\{1 \le i \le 4 \mid \varkappa(i) = 0\}$.

4. Combinatorially possible punctured transfer kernel types

In this section, we arrange all combinatorially possible S_3 -double orbits of the 5⁴ punctured quadruplets $\varkappa \in [0, 4]^3 \times [0, 4]$ by increasing invariant $0 \le \mu \le 4$ and cardinality of the image. Table 1 shows the punctured quadruplets with invariant $\nu = 0$ and Table 2 the punctured quadruplets with invariant $1 \le \nu \le 4$ as possible punctured transfer kernel types of 3-groups G with G/G' of type (9,3), resp. *punctured principalisation types* of number fields K with 3-class group $Cl_3(K)$ of type (9,3), according to Artin's reciprocity law [15]. The double orbits are divided into sections, denoted by letters, and identified by ordinal numbers.

We denote by $o(\varkappa) = (|\varkappa^{-1}\{i\}|)_{0 \le i \le 4}$ the family of occupation numbers of the selected double orbit representative \varkappa and by κ the quadruplet of Taussky's conditions [26] associated with \varkappa .

If a double orbit $\varkappa^{S_3 \times S_3}$ can be realised as a punctured transfer kernel type $\varkappa(G)$, then a suitable 3-group G is given in the notation of James [12], using Hall's isoclinism families [11].

Table 1 gives a coarse classification into sections A to E, an identification by ordinal numbers 1 to 20, and a set theoretical characterisation.

TABLE 1. THE 20 D3-double of Dids of $\mathcal{N} \in [1, 4]$ with $\mathcal{V} =$	TABLE 1	. The	20	S_3 -double	orbits of	of \varkappa	\in	[1,	$[4]^4$	with	$\nu =$: ()
--	---------	-------	----	---------------	-----------	----------------	-------	-----	---------	------	---------	------

		repres.	occupation	Taussky	charact.	cardinality	realising
Sec.	Nr.	. of dbl.orb. numb		cond.	property	of dbl.orb.	3-group
		н	$o(\varkappa)$	κ		$ arkappa^{S_3 imes S_3} $	G
A	1	(1111)	(04000)	(BBBA)	constant	3	$\Phi_2(31)$
В	2	(1112)	(03100)	(BBBA)	nearly	6	???
В	3	(1121)	(03100)	(BBBA)	constant	18	
C	4	(1122)	(02200)	(BBBA)		18	???
D	5	(1123)	(02110)	(BBBA)		18	
D	6	(1231)	(02110)	(BBBA)		18	???
В	7	(1114)	(03001)	(BBBA)	nearly	3	$\Phi_6(321)_{b_{1,1}}, \Phi_6(321)_{b_{1,2}}$
B	8	(1141)	(03001)	(BBAA)	constant	9	
D	9	(1124)	(02101)	(BBBA)		18	???
D	10	(1142)	(02101)	(BBAA)		18	???
D	11	(1241)	(02101)	(BBAA)		36	$\Phi_6(321)_{a_1}, \Phi_6(321)_{a_2}$
E	12	(1234)	(01111)	(BBBA)	per-	6	$\Phi_6(321)_{b_{2,1}}, \Phi_6(321)_{b_{2,2}}$
E	13	(1243)	(01111)	(BBAA)	mutation	18	
C	14	(1144)	(02002)	(BBAA)		9	
C	15	(1441)	(02002)	(BAAA)		9	
D	16	(1244)	(01102)	(BBAA)		18	???
D	17	(1442)	(01102)	(BAAA)		18	???
В	18	(1444)	(01003)	(BAAA)	nearly	9	???
В	19	(4441)	(01003)	(AAAA)	constant	3	???
A	20	(4444)	(00004)	(AAAA)	constant	1	$\Phi_6(2^21^2)_g, \Phi_2(2^2), \Phi_8(32)$
					Total number:	256	
-							

Table 2 gives a coarse classification into sections a to e, an identification by ordinal numbers 1 to 32, and a set theoretical characterisation.

		repres.	occupation	Taussky	charact.	cardinality	realising
Sec.	Nr.	of dbl.orb.	numbers	cond.	property	of dbl.orb.	3-group
		н	$o(\varkappa)$	κ		$ arkappa^{S_3 imes S_3} $	G
a	1	(0000)	(40000)	(AAAA)	constant	1	$\Phi_2(21^2)_c, \Phi_3(21^3)_d, \Phi_3(21^3)_e$
b	2	(0001)	(31000)	(AAAA)	nearly	3	$\Phi_{3}(31^{2})_{a}$
b	3	(0010)	(31000)	(AABA)	$\operatorname{constant}$	9	$\Phi_3(31^2)_{b_1}, \Phi_3(31^2)_{b_2}$
с	4	(0011)	(22000)	(AABA)		9	
c	5	(0110)	(22000)	(ABBA)		9	
d	6	(0012)	(21100)	(AABA)		18	
d	7	(0120)	(21100)	(ABBA)		18	
b	8	(0111)	(13000)	(ABBA)	nearly	9	
b	9	(1110)	(13000)	(BBBA)	$\operatorname{constant}$	3	
d	10	(0112)	(12100)	(ABBA)		18	$\Phi_{6}(31^{3})_{a}$
d	11	(0121)	(12100)	(ABBA)		36	
d	12	(1120)	(12100)	(BBBA)		18	
е	13	(0123)	(11110)	(ABBA)	per-	18	
е	14	(1230)	(11110)	(BBBA)	mutation	6	$\Phi_6(31^3)_{b_1}, \Phi_6(31^3)_{b_2}$
b	15	(0004)	(30001)	(AAAA)	nearly	1	$\Phi_3(2^21)_{b_1}, \Phi_3(2^21)_{b_2}, \Phi_6(21^4)_d$
b	16	(0040)	(30001)	(AAAA)	$\operatorname{constant}$	3	$\Phi_{3}(2^{2}1)_{a}$
d	17	(0014)	(21001)	(AABA)		9	
d	18	(0041)	(21001)	(AAAA)		9	
d	19	(0140)	(21001)	(ABAA)		18	
d	20	(0114)	(12001)	(ABBA)		9	
d	21	(0141)	(12001)	(ABAA)		18	
d	22	(1140)	(12001)	(BBAA)		9	
е	23	(0124)	(11101)	(ABBA)	per-	18	
е	24	(0142)	(11101)	(ABAA)	muta-	36	
е	25	(1240)	(11101)	(BBAA)	tion	18	
с	26	(0044)	(20002)	(AAAA)		3	
с	27	(0440)	(20002)	(AAAA)		3	$\Phi_6(2^21^2)_{h_1}$
d	28	(0144)	(11002)	(ABAA)		18	
d	29	(0441)	(11002)	(AAAA)		9	
d	30	(1440)	(11002)	(BAAA)		9	
b	31	(0444)	(10003)	(AAAA)	nearly	3	$\Phi_6(2^21^2)_{h_2}$
b	32	(4440)	(10003)	(AAAA)	constant	1	
				Total number:	625 - 256 =	369	

TABLE 2. The 32 S_3 -double orbits of $\varkappa \in [0,4]^4 \setminus [1,4]^4$ with $1 \le \nu \le$	4
--	---

5. Actual realisation of punctured transfer kernel types

In this section, we characterise all punctured quadruplets $\varkappa \in [0, 4]^4$ which can be realised as punctured transfer kernel types of metabelian 3-groups G with abelianisation G/G' of type (9, 3). For this purpose we assume that G occurs as the second 3-class group $\operatorname{Gal}(F_3^2(K)|K)$ [16] of an algebraic number field K with 3-class group $\operatorname{Cl}_3(K)$ of type (9, 3). Then the structure of the abelianisations M_i/M_i' of the maximal normal subgroups M_i of G, which we call the transfer target type (TTT) τ of G, is identical with the structure of the 3-class groups $\operatorname{Cl}_3(N_i)$ of the unramified cyclic cubic extensions $N_i|K$, for $1 \leq i \leq 4$. Further, the structure of the abelianisation \tilde{M}_4/\tilde{M}_4' of the distinguished normal subgroup $\tilde{M}_4 = \Phi(G)$ of index 9 in G is identical with the structure of the 3-class group $\operatorname{Cl}_3(\tilde{N}_4)$ of the Frattini extension, the unique unramified bicyclic bicubic extension $\tilde{N}_4|K$. The isomorphism invariant $\varepsilon = \varepsilon(G)$ denotes the number of 3-class groups $\operatorname{Cl}_3(N_i)$ of 3-rank at least 3. In the case of a quadratic base field $K = \mathbb{Q}(\sqrt{D})$ with discriminant D, the 3-class numbers $h_i = h_3(L_i)$ of the non-Galois absolutely cubic subfields L_i of the N_i can be used additionally for the characterisation.

Table 3 lists the 13 isomorphism classes of 3-groups G with abelianisation G/G' of type (9,3) in the isoclinism family Φ_6 [19]. They form branch 1 of this family, whence their order, nilpotency class, and coclass [14] are given by $|G| = 3^6$, cl(G) = 3, cc(G) = 3, whereas the stem groups of Φ_6 have $|G| = 3^5$, cl(G) = 3, cc(G) = 2. Generally, the nilpotency class cl(G) = 3 is a family invariant of Φ_6 . \downarrow denotes a descendant.

TABLE 3. TKT and TTT of 3-group	s in	branch 1 c	of isoclinisn	ı famil	$y \Phi_6$	or	descendants
---------------------------------	------	------------	---------------	---------	------------	----	-------------

type	н	h_1	h_2	$\operatorname{Cl}_3(N_1)$	$\operatorname{Cl}_3(N_2)$	$\operatorname{Cl}_3(N_3)$	$\operatorname{Cl}_3(N_4)$	ε	$\operatorname{Cl}_3(\tilde{N}_4)$	min. $ D $	group
D.11	(4232)	3	3	(9, 3, 3)	(27, 3)	(27, 3)	(9,3,3)	2	(9,3,3)	-3299	$\Phi_6(321)_{a_1}$
D.11	(4322)	3	3	(9, 3, 3)	(27, 3)	(27, 3)	(9,3,3)	2	(9,3,3)	255973	$\Phi_6(321)_{a_2}$
B.7	(1114)	3	3	(27, 3)	(27, 3)	(27, 3)	(3,3,3,3)	1	(9,3,3,3)	-54695	$\Phi_6(321)_{b_{1,1}}\downarrow$
B.7	(1114)	3	3	(27, 3)	(27, 3)	(27, 3)	(3,3,3,3)	1	(9,3,3,3)	1664444	$\Phi_6(321)_{b_{1,2}}\downarrow$
E.12	(1234)	3	3	(27, 3)	(27, 3)	(27, 3)	(9,3,3)	1	(9,9,3)	-5703	$\Phi_6(321)_{b_{2,1}}\downarrow$
E.12	(1324)	3	3	(27, 3)	(27, 3)	(27, 3)	(9,3,3)	1	(9,9,3)	1893032	$\Phi_6(321)_{b_{2,2}}\downarrow$
d.10	(0112)			(9, 3, 3)	(27, 3)	(27, 3)	(9,3,3)	2	(9, 3, 3)		$\Phi_6(31^3)_a$
e.14	(1320)			(27, 3)	(27, 3)	(27, 3)	(9,3,3)	1	(9,3,3)		$\Phi_6(31^3)_{b_1}$
e.14	(1230)			(27, 3)	(27, 3)	(27, 3)	(9,3,3)	1	(9,3,3)		$\Phi_6(31^3)_{b_2}$
A.20	(4444)	3	3	(9, 3, 3)	(9, 3, 3)	(9, 3, 3)	(3,3,3,3)	4	(9, 9, 3, 3, 3)	-289704	$\Phi_6(2^21^2)_g\downarrow$
c.27	(0440)			(9, 3, 3)	(9,3,3)	(9,3,3)	(9,3,3)	4	(3,3,3,3)		$\Phi_6(2^21^2)_{h_1}$
b.31	(0444)			(9, 3, 3)	(9,3,3)	(9,3,3)	(9,3,3)	4	$\left(3,3,3,3 ight)$		$\Phi_6(2^21^2)_{h_2}$
b.15	(0004)			(9, 3, 3)	(9,3,3)	(9,3,3)	(3,3,3,3)	4	(3,3,3,3)		$\Phi_{6}(21^{4})_{d}$

In Table 4 we give the 12 isomorphism classes of 3-groups G with abelianisation G/G' of type (9,3) in the isoclinism families Φ_2 , Φ_3 , and Φ_8 . For Φ_2 , they form branch 1 of this family, whence their order and coclass are given by $|G| = 3^4$, cc(G) = 2, whereas the stem groups of Φ_2 have $|G| = 3^3$, cc(G) = 1. The class cl(G) = 2 is a family invariant of Φ_2 . For Φ_3 , they form branch 1 of this family, whence their order and coclass are given by $|G| = 3^5$, cc(G) = 2, whereas the stem groups of Φ_3 have $|G| = 3^4$, cc(G) = 1. The class cl(G) = 3 is a family invariant of Φ_3 . Finally, the stem of Φ_8 consists of a unique isomorphism class with $|G| = 3^5$, cl(G) = 3, cc(G) = 2. \downarrow denotes a descendant.

TABLE 4. TKT and TTT of 3-groups in isoclinism families Φ_2, Φ_3, Φ_8 or descendants

type	\mathcal{U}	h ₁	h_2	$\operatorname{Cl}_3(N_1)$	$\operatorname{Cl}_3(N_2)$	$\operatorname{Cl}_3(N_3)$	$\operatorname{Cl}_3(N_4)$	ε	$\operatorname{Cl}_3(\tilde{N}_4)$	min. $ D $	group
A.1	(1111)			(27)	(27)	(27)	(9,3)	0	(9)		$\Phi_2(31)$
A.20	(4444)			(9,3)	(9,3)	(9,3)	(9,3)	0	(3,3)		$\Phi_2(2^2)$
a.1	(0000)			(9,3)	(9,3)	(9,3)	(3,3,3)	1	(3,3)		$\Phi_2(21^2)_c$
b.2	(0001)	3	3	(9,3)	(9,3)	(9,3)	(9,3,3)	1	(9,3)	529393	$\Phi_3(31^2)_a$
b.3	(1000)	3	3	(27, 3)	(9,3)	(9,3)	(3,3,3)	1	(9,3)	635909	$\Phi_3(31^2)_{b_1}$
b.3	(1000)	3	3	(27, 3)	(9,3)	(9,3)	(3,3,3)	1	(9,3)	946733	$\Phi_3(31^2)_{b_2}$
b.16	(4000)	3	3	(9,3,3)	(9,3)	(9,3)	(3,3,3)	2	(3,3,3)	282461	$\Phi_3(2^21)_a$
b.15	(0004)	3	3	(9,3)	(9,3)	(9,3)	(3,3,3,3)	1	(3,3,3,3)	3763580	$\Phi_3(2^21)_{b_1}\downarrow$
b.15	(0004)	3	3	(9,3)	(9,3)	(9,3)	(9,3,3)	1	(9,3,3)	700 313	$\Phi_3(2^21)_{b_2}\downarrow$
a.1	(0000)	9	3	(9,3)	(9,3)	(9,3)	(9,9,3)	1	(9,9,3)	783689	$\Phi_3(21^3)_d\downarrow$
a.1	(0000)	9	3	(9,9,3)	(9,3)	(9,3)	(3,3,3)	2	(9,9,3)	626264	$\Phi_3(21^3)_e\downarrow$
A.20	(4444)			(9,3)	(9,3)	(9,3)	(9,3)	0	(9,3)		$\Phi_{8}(32)$

6. 3-groups of the first branch of isoclinism family Φ_3

Generally, the *p*-groups *G* of isoclinism family Φ_3 are characterized by the nilpotency class $\operatorname{cl}(G) = 3$ [12, p.618, 4.1]. Their common central quotient $G/\zeta_1(G)$ is the extra special *p*-group $G_0^3(0,0)$ of order p^3 and of exponent *p* [15, Thm.2.5]. For the 2-generator groups $G = \langle x, y \rangle$ in Φ_3 , the structure of their lower central series $(\gamma_j(G))_{j\geq 1}$ can be expressed by means of the main commutator, $s_2 = [y, x] \in \gamma_2(G) = [G, G]$, and the threefold commutator in $\gamma_3(G) = [\gamma_2(G), G]$,

$$s_3 = \begin{cases} [s_2, x], & \text{if } [s_2, y] = 1, \\ [s_2, y], & \text{if } [s_2, x] = 1. \end{cases}$$

The groups are metabelian with $\gamma_2(G) = \langle s_2, s_3 \rangle$ of type (p, p) and $\gamma_3(G) = \langle s_3 \rangle$ cyclic of order p.

The 2-generator groups in the first branch of Φ_3 have order $|G| = p^5$, coclass cc(G) = 2 and abelianization G/G' of type (p^2, p) . If we select the generators of $G = \langle x, y \rangle$ such that $x^{p^2} \in G'$ and $y^p \in G'$.

In the special case p = 3, the 4 maximal subgroups of G are given by

$$M_1 = \langle x, G' \rangle, \ M_2 = \langle xy, G' \rangle, \ M_3 = \langle xy^{-1}, G' \rangle, \ M_4 = \langle x^3, y, G' \rangle.$$

To calculate the transfer target type (TTT) $\tau(G)$, we need generators for the commutator quotients of the maximal subgroups. According to [5, p.52, Lem.2.1], we have

$$M'_{1} = [G', M_{1}] = (G')^{x-1} = \langle s_{2}^{x-1} \rangle = \langle [s_{2}, x] \rangle = \begin{cases} \langle s_{3} \rangle, & \text{if } [s_{2}, y] = 1, \\ 1, & \text{if } [s_{2}, x] = 1, \end{cases}$$

and $M_1/M_1' = \langle x, s_2, s_3 \rangle / \langle s_3 \rangle = \langle x, s_2 \rangle / \langle s_3 \rangle$, if $[s_2, y] = 1$, but $M_1/M_1' \simeq M_1 = \langle x, s_2, s_3 \rangle$, if $[s_2, x] = 1$.

Since

$$s_2^{xy-1} = [s_2, xy] = [s_2, y][s_2, x]^y = \begin{cases} 1 \cdot s_3^y = s_3, & \text{if } [s_2, y] = 1, \\ s_3 \cdot 1^y = s_3, & \text{if } [s_2, x] = 1, \end{cases}$$

i.e. $s_2^{xy-1} = s_3$ in any case, we have $M'_2 = [G', M_2] = (G')^{xy-1} = \langle s_2^{xy-1} \rangle = \langle s_3 \rangle$ and $M_2/M'_2 = \langle xy, s_2, s_3 \rangle / \langle s_3 \rangle = \langle xy, s_2 \rangle / \langle s_3 \rangle$.

Since

$$s_{2}^{xy^{-1}-1} = [s_{2}, xy^{-1}] = [s_{2}, y^{-1}][s_{2}, x]^{y^{-1}} = [s_{2}, y]^{-y^{-1}}[s_{2}, x]^{y^{-1}} = \begin{cases} 1^{-y^{-1}} \cdot s_{3}^{y^{-1}} = s_{3}, & \text{if } [s_{2}, y] = 1, \\ s_{3}^{-y^{-1}} \cdot 1^{y^{-1}} = s_{3}^{-1}, & \text{if } [s_{2}, x] = 1, \end{cases}$$

we have $M'_3 = [G', M_3] = (G')^{xy^{-1}-1} = \langle s_2^{xy^{-1}-1} \rangle = \langle s_3 \rangle$ and $M_3/M'_3 = \langle xy^{-1}, s_2, s_3 \rangle / \langle s_3 \rangle = \langle xy^{-1}, s_2 \rangle / \langle s_3 \rangle$, in any case. Since $M_4/\Phi(G)$ is cyclic and $x^3 \in \zeta_1(G)$, we have

$$M'_4 = [\Phi(G), M_4] = [G', M_4] = (G')^{y-1} = \langle s_2^{y-1} \rangle = \langle [s_2, y] \rangle = \begin{cases} 1, & \text{if } [s_2, y] = 1, \\ \langle s_3 \rangle, & \text{if } [s_2, x] = 1, \end{cases}$$

and $M_4/M'_4 = \langle x^3, y, s_2, s_3 \rangle / \langle s_3 \rangle = \langle x^3, y, s_2 \rangle / \langle s_3 \rangle$, if $[s_2, x] = 1$, but $M_4/M'_4 \simeq M_4 = \langle x^3, y, s_2, s_3 \rangle$, if $[s_2, y] = 1$.

These formulas admit to give upper bounds for the 3-rank of the abelianisations. Whereas M_2/M'_2 and M_3/M'_3 are at most of 3-rank 2, the 3-rank of M_1/M'_1 is bounded by 2, if $[s_2, y] = 1$, and by 3, if $[s_2, x] = 1$. The biggest 3-rank 4 can occur for M_4/M'_4 , if $[s_2, y] = 1$, and is bounded by 3, if $[s_2, x] = 1$.

Since the source of all transfers $V_i: G/G' \to M_i/M_i'$ can be represented by the generators as $G/G' = \{x^j y^\ell G' \mid 0 \le j < 9, \ 0 \le \ell < 3\}$, the possible transfer kernels ker(V_i) are either of dimension 1 (partial), $\tilde{M}_1/G' = \{y^\ell G' \mid 0 \le \ell < 3\}$, $\varkappa(i) = 1$, or $\tilde{M}_2/G' = \{x^{3\ell}y^\ell G' \mid 0 \le \ell < 3\}$, $\varkappa(i) = 2$, or $\tilde{M}_3/G' = \{x^{-3\ell}y^\ell G' \mid 0 \le \ell < 3\}$, $\varkappa(i) = 3$, or $\tilde{M}_4/G' = \{x^j G' \mid j = 0, 3, 6\}$, $\varkappa(i) = 4$, or of dimension 2 (total), $M_4/G' = \{x^j y^\ell G' \mid j = 0, 3, 6, \ 0 \le \ell < 3\}$, $\varkappa(i) = 0$.

To calculate the punctured transfer kernel type (TKT) $\varkappa(G)$, we need explicit expressions for the transfers $V_i = V_{G,M_i}$ from G/G' to the abelianisations of the maximal subgroups M_i/M'_i , based on equation (3).

For our fixed arrangement of the maximal subgroups of $G = \langle x, y \rangle$, we have $x \in M_1$ but $x \notin M_2, M_3, M_4$ and $y \in M_4$ but $y \notin M_1, M_2, M_3$. Consequently, the following transfer images are powers, $V_i(xG') = x^3M'_i$ for $2 \le i \le 4$ and $V_i(yG') = y^3M'_i$ for $1 \le i \le 3$. However, for the remaining transfer images we need a formula for the action of third trace elements as symbolic exponents. According to [15, Thm.3.1,(6)], we have

$$\begin{aligned} &\mathcal{V}_{1}(xG') = x^{\mathbf{S}_{3}(y)}M'_{1} = x^{1+y+y^{2}}M'_{1} = x^{3}[x,y]^{3}[[x,y],y]M'_{1} = x^{3}s_{2}^{-3}[s_{2}^{-1},y]M'_{1} = x^{3}s_{2}^{-3}[s_{2},y]^{-s_{2}^{-1}}M'_{1} = \\ &= \begin{cases} x^{3}s_{2}^{-3}M'_{1}, & \text{if } [s_{2},y] = 1, \\ x^{3}s_{2}^{-3}s_{3}^{-1}M'_{1}, & \text{if } [s_{2},x] = 1, \end{cases} \\ &\text{and } \mathcal{V}_{4}(yG') = y^{\mathbf{S}_{3}(x)}M'_{4} = y^{1+x+x^{2}}M'_{4} = y^{3}[y,x]^{3}[[y,x],x]M'_{4} = y^{3}s_{2}^{3}[s_{2},x]M'_{4} = \\ &= \begin{cases} y^{3}s_{2}^{3}s_{3}M'_{4}, & \text{if } [s_{2},y] = 1, \\ y^{3}s_{2}^{3}M'_{4}, & \text{if } [s_{2},x] = 1. \end{cases} \\ &\text{Summarised, } \mathcal{V}_{i}(x^{j}y^{\ell}G') = x^{3j}y^{3\ell}M'_{i}, & \text{if either } 2 < i < 3 \text{ or } i = 1, [s_{2},y] = 1 \text{ or } i = 4. \end{aligned}$$

Summarised, $V_i(x^j y^{\ell} G') = x^{3j} y^{3\ell} M_i^i$, if either $2 \le i \le 3$ or i = 1, $[s_2, y] = 1$ or i = 4, $[s_2, x] = 1$, but exceptionally $V_1(x^j y^{\ell} G') = x^{3j} s_3^{-j} y^{3\ell}$, if $[s_2, x] = 1$ and thus $M'_1 = 1$, and $V_4(x^j y^{\ell} G') = x^{3j} y^{3\ell} s_3^{\ell}$, if $[s_2, y] = 1$ and thus $M'_4 = 1$.

To determine the transfer kernel we have to solve the equation $V_i(x^j y^\ell G') = 1 \cdot M'_i$ with respect to j and ℓ .

For the standard case this can be done independently from the details of the presentation of the group G. If either $2 \leq i \leq 3$ or i = 1, $[s_2, y] = 1$ or i = 4, $[s_2, x] = 1$, then we have uniformly $M'_i = \langle s_3 \rangle = \gamma_3(G)$ and $V_i(x^j y^{\ell} G') = x^{3j} y^{3\ell} M'_i = M'_i$, i.e. $x^{3j} y^{3\ell} \in \langle s_3 \rangle$, implies $3 \mid j$ but admits arbitrary ℓ , since $x^9, y^3 \in \langle s_3 \rangle$, in any case. Consequently, $\varkappa(i) = 0$, generally in the standard case.

The exceptional cases, however, depend on the isomorphism class of the group G.

There are 8 isomorphism classes of 2-generator groups $G = \langle x, y \rangle$ in the first branch of Φ_3 and table 5 gives 3 representatives for each isomorphism class in the notation of GAP 4.4 [10], James [12, p.620, 4.5], and Ascione, Havas, Leedham-Green [3, p.272, 7] resp. [1, p.79, Fig.5.4]. A common feature of all 8 isomorphism classes are the relations $s_2 = [y, x]$, $s_2^3 = 1$, $s_3^3 = 1$ and we only give the remaining relations for $[s_2, x]$, $[s_2, y]$, x^9 , and y^3 .

TABLE 5. Representatives of the 8 isomorphism classes in branch 1 of Φ_3

GAP 4.4	James	Ascione	$[s_2, x]$	$[s_2, y]$	x^9	y^3
$\langle 243, 20 \rangle$	$\Phi_3(31^2)_{b_1}$	В	1	s_3	s_{3}^{-1}	1
$\langle 243, 19 \rangle$	$\Phi_3(31^2)_{b_2}$	\mathbf{C}	1	s_3	s_3	1
$\langle 243, 16 \rangle$	$\Phi_{3}(31^{2})_{a}$	\mathbf{F}	s_3	1	s_3	s_{3}^{-1}
$\langle 243, 18 \rangle$	$\Phi_3(2^21)_a$	D	1	s_3	1	s_{3}^{-1}
$\langle 243, 14 \rangle$	$\Phi_3(2^21)_{b_2}$	Η	s_3	1	1	s_3
$\langle 243, 13 \rangle$	$\Phi_3(2^21)_{b_1}$	Ε	s_3	1	1	1
$\langle 243, 15 \rangle$	$\Phi_3(21^3)_d$	G	s_3	1	1	s_{3}^{-1}
$\langle 243, 17 \rangle$	$\Phi_3(21^3)_e$	А	1	s_3	1	1

References

- J. Ascione, On 3-groups of second maximal class (Ph.D. Thesis, Australian National University, Canberra, 1979).
- [2] J. Ascione, On 3-groups of second maximal class, Bull. Austral. Math. Soc. 21 (1980), 473–474.
- [3] J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, *Bull. Austral. Math. Soc.* 17 (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p.320.
- [4] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat. (Ser. 3) 1 (1898), 137–228.
- [5] N. Blackburn, On a special class of *p*-groups, Acta Math. 100 (1958), 45–92.
- [6] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating p-groups by coclass with GAP, Computational group theory and the theory of groups, 45–61 (Contemp. Math. 470, AMS, Providence, RI, 2008).
- [7] B. Eick and D. Feichtenschlager, Infinite sequences of p-groups with fixed coclass, preprint, 2010.
- [8] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass, Bull. London Math. Soc. 40 (2008), 274–288.
- [9] B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O'Brien, On the classification of groups of primepower order by coclass: The 3-groups of coclass 2 (preprint, 2011).
- [10] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.12, 2008, (http://www.gap-system.org).
- [11] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130–141.
- [12] R. James, The groups of order p⁶ (p an odd prime), Math. Comp. 34 (1980), nr. 150, 613–637.
- [13] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002.
- [14] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math. 35 (1980), 193–203.
- [15] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. (2010), DOI 10.1007/s00605-010-0277-x.
- [16] D. C. Mayer, The second *p*-class group of a number field, Int. J. Number Theory (2010).
- [17] D. C. Mayer, Principalisation algorithm via class group structure, J. Th. Nombres Bordeaux (2011).
- [18] D. C. Mayer, The distribution of second p-class groups on coclass graphs (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011).
- [19] D. C. Mayer, Stem and branch groups of isoclinism families (preprint, 2011).
- [20] B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem (Inauguraldissertation, Band 1, Universität zu Köln, 1989).
- [21] B. Nebelung, Anhang zu Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem (Inauguraldissertation, Band 2, Universität zu Köln, 1989).
- [22] M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), 131–169.
- [23] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math. 171 (1934), 19–41.
- [24] O. Schreier, Über die Erweiterung von Gruppen I, Monatsh. Math. Phys. 34 (1926), 165–180.
- [25] O. Schreier, Uber die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321–346.
- [26] O. Taussky, A remark concerning Hilbert's Theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.

NAGLERGASSE 53, 8010 GRAZ, AUSTRIA

E-mail address: algebraic.number.theory@algebra.at *URL*: http://www.algebra.at