METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE $(9,3)$

DANIEL C. MAYER

Abstract

Presentations of metabelian 3-groups G with abelianisation G / G^{\prime} of type $(9,3)$ are used to determine explicit expressions for the transfers V_{i} from these groups to their maximal normal subgroups M_{i}, and to calculate the transfer kernels $\operatorname{ker}\left(\mathrm{V}_{i}\right)$ in G / G^{\prime} and the structure of the transfer targets M_{i} / M_{i}^{\prime}, for $1 \leq i \leq 4$.

1. Introduction

We consider metabelian 3-groups $G=\langle x, y\rangle$ with two generators satisfying $x^{9} \in G^{\prime}$ and $y^{3} \in G^{\prime}$ and commutator quotient group G / G^{\prime} of type $(9,3)$. Generally, such a group possesses - four normal subgroups of index 9 ,

$$
\tilde{M}_{1}=\left\langle y, G^{\prime}\right\rangle, \tilde{M}_{2}=\left\langle x^{3} y, G^{\prime}\right\rangle, \tilde{M}_{3}=\left\langle x^{3} y^{-1}, G^{\prime}\right\rangle, \tilde{M}_{4}=\left\langle x^{3}, G^{\prime}\right\rangle
$$

- and four maximal normal subgroups of index 3 ,

$$
M_{1}=\left\langle x, G^{\prime}\right\rangle, M_{2}=\left\langle x y, G^{\prime}\right\rangle, M_{3}=\left\langle x y^{-1}, G^{\prime}\right\rangle, M_{4}=\left\langle x^{3}, y, G^{\prime}\right\rangle
$$

We use the subscript 4 to indicate that for $M_{4}=\prod_{i=1}^{4} \tilde{M}_{i}$ the factor group $M_{4} / G^{\prime}=\left\langle x^{3}, y\right\rangle$ is bicyclic of type $(3,3)$, whereas M_{i} / G^{\prime} is cyclic of order 9 , for $1 \leq i \leq 3$, and that $\tilde{M}_{4}=\cap_{i=1}^{4} M_{i}=$ $\Phi(G)=G^{3} G^{\prime}$ coincides with the Frattini subgroup of G, whereas \tilde{M}_{i} is only contained in M_{4}, for $1 \leq i \leq 3$.

Figure 1. Double diamond head of a group G with G / G^{\prime} of type $(9,3)$

Date: October 02, 2011.
2000 Mathematics Subject Classification. Primary 20D15, Secondary 20F12, 20 F14.
Key words and phrases. Metabelian 3-groups, abelianisation of type (9,3), transfers of 3-groups.
Research supported by the Austrian Science Fund, Grant Nr. J0497-PHY.

2. Common formulas for 2-GENERATOR GROUPS OF Small CLASS

Let $G=\langle x, y\rangle$ be a group with two generators x, y. Define the main commutator by $s_{2}=[y, x] \in \gamma_{2}(G)$ and the threefold commutators by $s_{3}=\left[s_{2}, x\right], t_{3}=\left[s_{2}, y\right] \in \gamma_{3}(G)$. Then $y x=x y[y, x]=x y s_{2}, s_{2} x=x s_{2}\left[s_{2}, x\right]=x s_{2} s_{3}$, and $s_{2} y=y s_{2}\left[s_{2}, y\right]=y s_{2} t_{3}$.

If G is metabelian, then
$\left[s_{2}^{-1}, x\right]=\left[s_{2}, x\right]^{-s_{2}^{-1}}=s_{3}^{-s_{2}^{-1}}=s_{3}^{-1},\left[s_{2}^{-1}, y\right]=\left[s_{2}, y\right]^{-s_{2}^{-1}}=t_{3}^{-s_{2}^{-1}}=t_{3}^{-1}$,
and $\left[s_{2}^{-1}, y^{-1}\right]=\left[s_{2}^{-1}, y\right]^{-y^{-1}}=\left(t_{3}^{-1}\right)^{-y^{-1}}=t_{3}^{y^{-1}}=t_{3}$, if t_{3} lies in the centre $\zeta_{1}(G)$.
Consequently, $\left[y^{-1}, x\right]=[y, x]^{-y^{-1}}=s_{2}^{-y^{-1}}=\left(s_{2}^{-1}\right)^{y^{-1}}=s_{2}^{-1}\left[s_{2}^{-1}, y^{-1}\right]=s_{2}^{-1} t_{3}$.
After this preliminary commutator calculus, we prove two formulas for 3rd powers of products of the generators of a metabelian 2 -generator group G, now assuming that s_{3}, t_{3} belong to the centre $\zeta_{1}(G)$.

$$
\begin{align*}
(x y)^{3} & =x^{3} y^{3} s_{2}^{3} s_{3} t_{3}^{5} \tag{1}\\
\left(x y^{-1}\right)^{3} & =x^{3} y^{-3} s_{2}^{-3} s_{3}^{-1} t_{3}^{8} .
\end{align*}
$$

Proof. $(x y)^{3}=x y x y x y=x x y s_{2} x y s_{2} y=x^{2} y x s_{2} s_{3} y s_{2} y=x^{2} x y s_{2} s_{2} y s_{2} y s_{3}=x^{3} y s_{2} y s_{2} t_{3} y s_{2} t_{3} s_{3}=$ $=x^{3} y y s_{2} t_{3} y s_{2} t_{3} s_{2} s_{3} t_{3}^{2}=x^{3} y^{2} s_{2} y s_{2}^{2} s_{3} t_{3}^{4}=x^{3} y^{2} y s_{2} t_{3} s_{2}^{2} s_{3} t_{3}^{4}=x^{3} y^{3} s_{2}^{3} s_{3} t_{3}^{5}$
and $\left(x y^{-1}\right)^{3}=x y^{-1} x y^{-1} x y^{-1}=x x y^{-1}\left[y^{-1}, x\right] x y^{-1}\left[y^{-1}, x\right] y^{-1}=x^{2} y^{-1} s_{2}^{-1} t_{3} x y^{-1} s_{2}^{-1} t_{3} y^{-1}=$
$=x^{2} y^{-1} x s_{2}^{-1}\left[s_{2}^{-1}, x\right] y^{-1} y^{-1} s_{2}^{-1}\left[s_{2}^{-1}, y^{-1}\right] t_{3}^{2}=x^{2} x y^{-1} s_{2}^{-1} t_{3} s_{2}^{-1} s_{3}^{-1} y^{-1} y^{-1} s_{2}^{-1} t_{3} t_{3}^{2}=$
$=x^{3} y^{-1} s_{2}^{-1} y^{-1} s_{2}^{-1} t_{3} s_{3}^{-1} y^{-1} s_{2}^{-1} t_{3}^{4}=x^{3} y^{-1} y^{-1} s_{2}^{-1} t_{3} s_{2}^{-1} y^{-1} s_{2}^{-1} s_{3}^{-1} t_{3}^{5}=$
$=x^{3} y^{-2} s_{2}^{-1} y^{-1} s_{2}^{-1} t_{3} s_{2}^{-1} s_{3}^{-1} t_{3}^{6}=x^{3} y^{-2} y^{-1} s_{2}^{-1} t_{3} s_{2}^{-2} s_{3}^{-1} t_{3}^{7}=x^{3} y^{-3} s_{2}^{-3} s_{3}^{-1} t_{3}^{8}$.
3. S_{3}-DOUble orbits of punctured transfer kernel types

The transfer V_{i} (Verlagerung) from G to its maximal subgroup M_{i} is given by

$$
\mathrm{V}_{i}=\mathrm{V}_{G, M_{i}}: G / G^{\prime} \rightarrow M_{i} / M_{i}^{\prime}, g \mapsto \begin{cases}g^{3}, & \text { if } g \in G \backslash M_{i}, \tag{3}\\ g^{S_{3}(h)}, & \text { if } g \in M_{i},\end{cases}
$$

where $\mathrm{S}_{3}(h)=1+h+h^{2} \in \mathbb{Z}[G]$, with an arbitrary element $h \in G \backslash M_{i}$, denotes the third trace element (Spur) in the group ring, acting as a symbolic exponent.

There are five possibilities for the kernel of V_{i}, for each $1 \leq i \leq 4$. Either $\operatorname{ker}\left(\mathrm{V}_{i}\right)=\tilde{M}_{j} / G^{\prime}$, for some $1 \leq j \leq 4$, and we denote the one-dimensional transfer by the singulet $\varkappa(i)=j$, or $\operatorname{ker}\left(\mathrm{V}_{i}\right)=M_{4} / G^{\prime}$, and we denote the two-dimensional transfer by $\varkappa(i)=0$. Due to the distinguished role of the subscript 4 , we combine the singulets to form a multiplet

$$
\varkappa=((\varkappa(1), \varkappa(2), \varkappa(3)) ; \varkappa(4)) \in[0,4]^{3} \times[0,4]
$$

which we call the punctured transfer kernel type (TKT) of the group G with respect to the selected generators.

To be independent from the choice of generators and the order of M_{1}, M_{2}, M_{3} and $\tilde{M}_{1}, \tilde{M}_{2}, \tilde{M}_{3}$, we define the double orbit

$$
\varkappa^{S_{3} \times S_{3}}=\left\{\tilde{\sigma} \circ \varkappa \circ \hat{\tau} \mid \sigma, \tau \in S_{3}\right\}
$$

of \varkappa under the operation of $S_{3} \times S_{3}$ as an isomorphism invariant $\varkappa(G)$ of G. Here, $\tilde{\sigma}$ denotes the extension of σ from [1,3] to [0,4] which fixes 0 and 4 and $\hat{\tau}$ denotes the extension of τ from [1,3] to $[1,4]$ which fixes 4 .

Two further isomorphism invariants of G are $\mu=\mu(G)=\#\{1 \leq i \leq 4 \mid \varkappa(i)=4\}$ and the number of two-dimensional transfers $\nu=\nu(G)=\#\{1 \leq i \leq 4 \mid \varkappa(i)=0\}$.

4. Combinatorially possible punctured transfer kernel types

In this section, we arrange all combinatorially possible S_{3}-double orbits of the 5^{4} punctured quadruplets $\varkappa \in[0,4]^{3} \times[0,4]$ by increasing invariant $0 \leq \mu \leq 4$ and cardinality of the image. Table 1 shows the punctured quadruplets with invariant $\nu=0$ and Table 2 the punctured quadruplets with invariant $1 \leq \nu \leq 4$ as possible punctured transfer kernel types of 3 -groups G with G / G^{\prime} of type $(9,3)$, resp. punctured principalisation types of number fields K with 3-class group $\mathrm{Cl}_{3}(K)$ of type $(9,3)$, according to Artin's reciprocity law [15]. The double orbits are divided into sections, denoted by letters, and identified by ordinal numbers.

We denote by $o(\varkappa)=\left(\left|\varkappa^{-1}\{i\}\right|\right)_{0 \leq i \leq 4}$ the family of occupation numbers of the selected double orbit representative \varkappa and by κ the quadruplet of Taussky's conditions [26] associated with \varkappa.

If a double orbit $\varkappa^{S_{3} \times S_{3}}$ can be realised as a punctured transfer kernel type $\varkappa(G)$, then a suitable 3 -group G is given in the notation of James [12], using Hall's isoclinism families [11].

Table 1 gives a coarse classification into sections A to E, an identification by ordinal numbers 1 to 20 , and a set theoretical characterisation.

TABLE 1. The $20 S_{3}$-double orbits of $\varkappa \in[1,4]^{4}$ with $\nu=0$

Sec.		repres. of dbl.orb. \varkappa	occupation numbers $o(\varkappa)$	Taussky cond. κ	charact. property	cardinality of dbl.orb. $\left\|\varkappa^{S_{3} \times S_{3}}\right\|$	realising 3-group G
A	1	(1111)	(04000)	$(B B B A)$	constant	3	$\Phi_{2}(31)$
B	2	(1112)	(03100)	$(B B B A)$	nearly	6	???
B	3	(1121)	(03100)	$(B B B A)$	constant	18	
C	4	(1122)	(02200)	$(B B B A)$		18	???
D	5	(1123)	(02110)	$(B B B A)$		18	
D	6	(1231)	(02110)	$(B B B A)$		18	???
B	7	(1114)	(03001)	($B B B A$)	nearly	3	$\Phi_{6}(321)_{b_{1,1}}, \Phi_{6}(321)_{b_{1,2}}$
B	8	(1141)	(03001)	$(B B A A)$	constant	9	
D	9	(1124)	(02101)	($B B B A$)		18	???
D	10	(1142)	(02101)	$(B B A A)$		18	??
D	11	(1241)	(02101)	$(B B A A)$		36	$\Phi_{6}(321)_{a_{1}}, \Phi_{6}(321)_{a_{2}}$
E	12	(1234)	(01111)	($B B B A$)	per-	6	$\Phi_{6}(321)_{b_{2,1}}, \Phi_{6}(321)_{b_{2,2}}$
E	13	(1243)	(01111)	$(B B A A)$	mutation	18	
C	14	(1144)	(02002)	($B B A A$)		9	
C	15	(1441)	(02002)	($B A A A$)		9	
D	16	(1244)	(01102)	($B B A A$)		18	???
D	17	(1442)	(01102)	($B A A A$)		18	???
B	18	(1444)	(01003)	($B A A A$)	nearly	9	???
B	19	(4441)	(01003)	($A A A A$)	constant	3	???
A	20	(4444)	(00004)	($A A A A$)	constant	1	$\Phi_{6}\left(2^{2} 1^{2}\right)_{g}, \Phi_{2}\left(2^{2}\right), \Phi_{8}(32)$
					Total number:	256	

Table 2 gives a coarse classification into sections a to e, an identification by ordinal numbers 1 to 32 , and a set theoretical characterisation.

TABLE 2. The $32 S_{3}$-double orbits of $\varkappa \in[0,4]^{4} \backslash[1,4]^{4}$ with $1 \leq \nu \leq 4$

Sec.		repres. of dbl.orb. \varkappa	occupation numbers $o(\varkappa)$	Taussky cond. κ	charact. property	cardinality of dbl.orb. $\left\|\varkappa^{S_{3} \times S_{3}}\right\|$	realising 3-group G
a	1	(0000)	(40000)	($A A A A$)	constant	1	$\Phi_{2}\left(21^{2}\right)_{c}, \Phi_{3}\left(21^{3}\right)_{d}, \Phi_{3}\left(21^{3}\right)_{e}$
b	2	(0001)	(31000)	($A A A A$)	nearly	3	$\Phi_{3}\left(31^{2}\right)_{a}$
b	3	(0010)	(31000)	$(A A B A)$	constant	9	$\Phi_{3}\left(31^{2}\right)_{b_{1}}, \Phi_{3}\left(31^{2}\right)_{b_{2}}$
c	4	(0011)	(22000)	($A A B A$)		9	
c	5	(0110)	(22000)	$(A B B A)$		9	
d	6	(0012)	(21100)	($A A B A$)		18	
d	7	(0120)	(21100)	$(A B B A)$		18	
b	8	(0111)	(13000)	($A B B A$)	nearly	9	
b	9	(1110)	(13000)	$(B B B A)$	constant	3	
d	10	(0112)	(12100)	$(A B B A)$		18	$\Phi_{6}\left(31^{3}\right)_{a}$
d	11	(0121)	(12100)	$(A B B A)$		36	
d	12	(1120)	(12100)	$(B B B A)$		18	
e	13	(0123)	(11110)	($A B B A$)	per-	18	
e	14	(1230)	(11110)	$(B B B A)$	mutation	6	$\Phi_{6}\left(31^{3}\right)_{b_{1}}, \Phi_{6}\left(31^{3}\right)_{b_{2}}$
b	15	(0004)	(30001)	($A A A A$)	nearly	1	$\Phi_{3}\left(2^{2} 1\right)_{b_{1}}, \Phi_{3}\left(2^{2} 1\right)_{b_{2}}, \Phi_{6}\left(21^{4}\right)_{d}$
b	16	(0040)	(30001)	$(A A A A)$	constant	3	$\Phi_{3}\left(2^{2} 1\right)_{a}$
d	17	(0014)	(21001)	($A A B A$)		9	
d	18	(0041)	(21001)	($A A A A$)		9	
d	19	(0140)	(21001)	$(A B A A)$		18	
d	20	(0114)	(12001)	$(A B B A)$		9	
d	21	(0141)	(12001)	$(A B A A)$		18	
d	22	(1140)	(12001)	$(B B A A)$		9	
e	23	(0124)	(11101)	($A B B A$)	per-	18	
e	24	(0142)	(11101)	($A B A A$)	muta-	36	
e	25	(1240)	(11101)	$(B B A A)$	tion	18	
c	26	(0044)	(20002)	($A A A A$)		3	
c	27	(0440)	(20002)	($A A A A$)		3	$\Phi_{6}\left(2^{2} 1^{2}\right)_{h_{1}}$
d	28	(0144)	(11002)	($A B A A$)		18	
d	29	(0441)	(11002)	($A A A A$)		9	
d	30	(1440)	(11002)	$(B A A A)$		9	
b	31	(0444)	(10003)	($A A A A$)	nearly	3	$\Phi_{6}\left(2^{2} 1^{2}\right)_{h_{2}}$
b	32	(4440)	(10003)	$(A A A A)$	constant	1	
				Total number:	$625-256=$	369	

5. Actual realisation of punctured transfer kernel types

In this section, we characterise all punctured quadruplets $\varkappa \in[0,4]^{4}$ which can be realised as punctured transfer kernel types of metabelian 3-groups G with abelianisation G / G^{\prime} of type $(9,3)$. For this purpose we assume that G occurs as the second 3 -class group $\operatorname{Gal}\left(\mathrm{F}_{3}^{2}(K) \mid K\right)[16]$ of an algebraic number field K with 3 -class group $\mathrm{Cl}_{3}(K)$ of type (9,3). Then the structure of the abelianisations M_{i} / M_{i}^{\prime} of the maximal normal subgroups M_{i} of G, which we call the transfer target type (TTT) τ of G, is identical with the structure of the 3 -class groups $\mathrm{Cl}_{3}\left(N_{i}\right)$ of the unramified cyclic cubic extensions $N_{i} \mid K$, for $1 \leq i \leq 4$. Further, the structure of the abelianisation $\tilde{M}_{4} / \tilde{M}_{4}^{\prime}$ of the distinguished normal subgroup $\tilde{M}_{4}=\Phi(G)$ of index 9 in G is identical with the structure of the 3-class group $\mathrm{Cl}_{3}\left(\tilde{N}_{4}\right)$ of the Frattini extension, the unique unramified bicyclic bicubic extension $\tilde{N}_{4} \mid K$. The isomorphism invariant $\varepsilon=\varepsilon(G)$ denotes the number of 3-class groups $\mathrm{Cl}_{3}\left(N_{i}\right)$ of 3 -rank at least 3 . In the case of a quadratic base field $K=\mathbb{Q}(\sqrt{D})$ with discriminant D, the 3 -class numbers $\mathrm{h}_{i}=\mathrm{h}_{3}\left(L_{i}\right)$ of the non-Galois absolutely cubic subfields L_{i} of the N_{i} can be used additionally for the characterisation.

Table 3 lists the 13 isomorphism classes of 3 -groups G with abelianisation G / G^{\prime} of type $(9,3)$ in the isoclinism family Φ_{6} [19]. They form branch 1 of this family, whence their order, nilpotency class, and coclass [14] are given by $|G|=3^{6}, \operatorname{cl}(G)=3, \operatorname{cc}(G)=3$, whereas the stem groups of Φ_{6} have $|G|=3^{5}, \operatorname{cl}(G)=3, \operatorname{cc}(G)=2$. Generally, the nilpotency class $\operatorname{cl}(G)=3$ is a family invariant of $\Phi_{6} . \downarrow$ denotes a descendant.

Table 3. TKT and TTT of 3-groups in branch 1 of isoclinism family Φ_{6} or descendants

type	\varkappa	h_{1}	$\mathrm{~h}_{2}$	$\mathrm{Cl}_{3}\left(N_{1}\right)$	$\mathrm{Cl}_{3}\left(N_{2}\right)$	$\mathrm{Cl}_{3}\left(N_{3}\right)$	$\mathrm{Cl}_{3}\left(N_{4}\right)$	ε	$\mathrm{Cl}_{3}\left(\tilde{N}_{4}\right)$	min. $\|D\|$	group
D.11	(4232)	3	3	$(9,3,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	2	$(9,3,3)$	$\|-3299\|$	$\Phi_{6}(321)_{a_{1}}$
D.11	(4322)	3	3	$(9,3,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	2	$(9,3,3)$	255973	$\Phi_{6}(321)_{a_{2}}$
B.7	(1114)	3	3	$(27,3)$	$(27,3)$	$(27,3)$	$(3,3,3,3)$	1	$(9,3,3,3)$	$\|-54695\|$	$\Phi_{6}(321)_{b_{1,1}} \downarrow$
B.7	(1114)	3	3	$(27,3)$	$(27,3)$	$(27,3)$	$(3,3,3,3)$	1	$(9,3,3,3)$	1664444	$\Phi_{6}(321)_{b_{1,2}} \downarrow$
E.12	(1234)	3	3	$(27,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	1	$(9,9,3)$	$\|-5703\|$	$\Phi_{6}(321)_{b_{2,1}} \downarrow$
E.12	(1324)	3	3	$(27,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	1	$(9,9,3)$	1893032	$\Phi_{6}(321)_{b_{2,2}} \downarrow$
d.10	(0112)			$(9,3,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	2	$(9,3,3)$		$\Phi_{6}\left(31^{3}\right)_{a}$
e.14	(1320)			$(27,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	1	$(9,3,3)$		$\Phi_{6}\left(31^{3}\right)_{b_{1}}$
e.14	(1230)			$(27,3)$	$(27,3)$	$(27,3)$	$(9,3,3)$	1	$(9,3,3)$		$\Phi_{6}\left(31^{3}\right)_{b_{2}}$
A.20	(4444)	3	3	$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	$(3,3,3,3)$	4	$(9,9,3,3,3)$	$\|-289704\|$	$\Phi_{6}\left(2^{2} 1^{2}\right)_{g} \downarrow$
c.27	(0440)		$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	4	$(3,3,3,3)$		$\Phi_{6}\left(2^{2} 1^{2}\right)_{h_{1}}$	
b. 31	(0444)			$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	4	$(3,3,3,3)$		$\Phi_{6}\left(2^{2} 1^{2}\right)_{h_{2}}$
b.15	(0004)			$(9,3,3)$	$(9,3,3)$	$(9,3,3)$	$(3,3,3,3)$	4	$(3,3,3,3)$		$\Phi_{6}\left(21^{4}\right)_{d}$

In Table 4 we give the 12 isomorphism classes of 3 -groups G with abelianisation G / G^{\prime} of type $(9,3)$ in the isoclinism families Φ_{2}, Φ_{3}, and Φ_{8}. For Φ_{2}, they form branch 1 of this family, whence their order and coclass are given by $|G|=3^{4}, \operatorname{cc}(G)=2$, whereas the stem groups of Φ_{2} have $|G|=3^{3}, \operatorname{cc}(G)=1$. The class $\operatorname{cl}(G)=2$ is a family invariant of Φ_{2}. For Φ_{3}, they form branch 1 of this family, whence their order and coclass are given by $|G|=3^{5}, \operatorname{cc}(G)=2$, whereas the stem groups of Φ_{3} have $|G|=3^{4}, \operatorname{cc}(G)=1$. The class $\operatorname{cl}(G)=3$ is a family invariant of Φ_{3}. Finally, the stem of Φ_{8} consists of a unique isomorphism class with $|G|=3^{5}, \operatorname{cl}(G)=3, \operatorname{cc}(G)=2$.
\downarrow denotes a descendant.
Table 4. TKT and TTT of 3 -groups in isoclinism families $\Phi_{2}, \Phi_{3}, \Phi_{8}$ or descendants

type	\varkappa	h_{1}	$\mathrm{~h}_{2}$	$\mathrm{Cl}_{3}\left(N_{1}\right)$	$\mathrm{Cl}_{3}\left(N_{2}\right)$	$\mathrm{Cl}_{3}\left(N_{3}\right)$	$\mathrm{Cl}_{3}\left(N_{4}\right)$	ε	$\mathrm{Cl}_{3}\left(\tilde{N}_{4}\right)$	min. $\|D\|$	group
A.1	(1111)			(27)	(27)	(27)	$(9,3)$	0	(9)		$\Phi_{2}(31)$
A.20	(4444)			$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$	0	$(3,3)$		$\Phi_{2}\left(2^{2}\right)$
a.1	(0000)			$(9,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	1	$(3,3)$		$\Phi_{2}\left(21^{2}\right)_{c}$
b.2	(0001)	3	3	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3,3)$	1	$(9,3)$	529393	$\Phi_{3}\left(31^{2}\right)_{a}$
b.3	(1000)	3	3	$(27,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	1	$(9,3)$	635909	$\Phi_{3}\left(31^{2}\right)_{b_{1}}$
b.3	(1000)	3	3	$(27,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	1	$(9,3)$	946733	$\Phi_{3}\left(31^{2}\right)_{b_{2}}$
b.16	(4000)	3	3	$(9,3,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	2	$(3,3,3)$	282461	$\Phi_{3}\left(2^{2} 1\right)_{a}$
b.15	(0004)	3	3	$(9,3)$	$(9,3)$	$(9,3)$	$(3,3,3,3)$	1	$(3,3,3,3)$	3763580	$\Phi_{3}\left(2^{2} 1\right)_{b_{1} \downarrow} \downarrow$
b.15	(0004)	3	3	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3,3)$	1	$(9,3,3)$	700313	$\Phi_{3}\left(2^{2} 1\right)_{b_{2}} \downarrow$
a.1	(0000)	9	3	$(9,3)$	$(9,3)$	$(9,3)$	$(9,9,3)$	1	$(9,9,3)$	783689	$\Phi_{3}\left(21^{3}\right)_{d} \downarrow$
a.1	(0000)	9	3	$(9,9,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	2	$(9,9,3)$	626264	$\Phi_{3}\left(21^{3}\right)_{e} \downarrow$
A.20	(4444)			$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$	0	$(9,3)$		$\Phi_{8}(32)$

6. 3-GROUPS OF THE FIRST BRANCH OF ISOCLINISM FAMILY Φ_{3}

Generally, the p-groups G of isoclinism family Φ_{3} are characterized by the nilpotency class $\operatorname{cl}(G)=3$ [12, p.618, 4.1]. Their common central quotient $G / \zeta_{1}(G)$ is the extra special p-group $G_{0}^{3}(0,0)$ of order p^{3} and of exponent $p[15$, Thm.2.5]. For the 2-generator groups $G=\langle x, y\rangle$ in Φ_{3}, the structure of their lower central series $\left(\gamma_{j}(G)\right)_{j \geq 1}$ can be expressed by means of the main commutator, $s_{2}=[y, x] \in \gamma_{2}(G)=[G, G]$, and the threefold commutator in $\gamma_{3}(G)=\left[\gamma_{2}(G), G\right]$,

$$
s_{3}= \begin{cases}{\left[s_{2}, x\right],} & \text { if }\left[s_{2}, y\right]=1 \\ {\left[s_{2}, y\right],} & \text { if }\left[s_{2}, x\right]=1\end{cases}
$$

The groups are metabelian with $\gamma_{2}(G)=\left\langle s_{2}, s_{3}\right\rangle$ of type (p, p) and $\gamma_{3}(G)=\left\langle s_{3}\right\rangle$ cyclic of order p.
The 2-generator groups in the first branch of Φ_{3} have order $|G|=p^{5}$, coclass $\operatorname{cc}(G)=2$ and abelianization G / G^{\prime} of type $\left(p^{2}, p\right)$. If we select the generators of $G=\langle x, y\rangle$ such that $x^{p^{2}} \in G^{\prime}$ and $y^{p} \in G^{\prime}$.

In the special case $p=3$, the 4 maximal subgroups of G are given by

$$
M_{1}=\left\langle x, G^{\prime}\right\rangle, M_{2}=\left\langle x y, G^{\prime}\right\rangle, M_{3}=\left\langle x y^{-1}, G^{\prime}\right\rangle, M_{4}=\left\langle x^{3}, y, G^{\prime}\right\rangle
$$

To calculate the transfer target type (TTT) $\tau(G)$, we need generators for the commutator quotients of the maximal subgroups. According to [5, p.52, Lem.2.1], we have

$$
M_{1}^{\prime}=\left[G^{\prime}, M_{1}\right]=\left(G^{\prime}\right)^{x-1}=\left\langle s_{2}^{x-1}\right\rangle=\left\langle\left[s_{2}, x\right]\right\rangle= \begin{cases}\left\langle s_{3}\right\rangle, & \text { if }\left[s_{2}, y\right]=1 \\ 1, & \text { if }\left[s_{2}, x\right]=1\end{cases}
$$

and $M_{1} / M_{1}^{\prime}=\left\langle x, s_{2}, s_{3}\right\rangle /\left\langle s_{3}\right\rangle=\left\langle x, s_{2}\right\rangle /\left\langle s_{3}\right\rangle$, if $\left[s_{2}, y\right]=1$, but $M_{1} / M_{1}^{\prime} \simeq M_{1}=\left\langle x, s_{2}, s_{3}\right\rangle$, if $\left[s_{2}, x\right]=1$.

Since

$$
s_{2}^{x y-1}=\left[s_{2}, x y\right]=\left[s_{2}, y\right]\left[s_{2}, x\right]^{y}= \begin{cases}1 \cdot s_{3}^{y}=s_{3}, & \text { if }\left[s_{2}, y\right]=1 \\ s_{3} \cdot 1^{y}=s_{3}, & \text { if }\left[s_{2}, x\right]=1\end{cases}
$$

i.e. $s_{2}^{x y-1}=s_{3}$ in any case, we have $M_{2}^{\prime}=\left[G^{\prime}, M_{2}\right]=\left(G^{\prime}\right)^{x y-1}=\left\langle s_{2}^{x y-1}\right\rangle=\left\langle s_{3}\right\rangle$ and $M_{2} / M_{2}^{\prime}=\left\langle x y, s_{2}, s_{3}\right\rangle /\left\langle s_{3}\right\rangle=\left\langle x y, s_{2}\right\rangle /\left\langle s_{3}\right\rangle$.

Since
$s_{2}^{x y^{-1}-1}=\left[s_{2}, x y^{-1}\right]=\left[s_{2}, y^{-1}\right]\left[s_{2}, x\right]^{y^{-1}}=\left[s_{2}, y\right]^{-y^{-1}}\left[s_{2}, x\right]^{y^{-1}}= \begin{cases}1^{-y^{-1}} \cdot s_{3}^{y^{-1}}=s_{3}, & \text { if }\left[s_{2}, y\right]=1, \\ s_{3}^{-y^{-1}} \cdot 1^{y^{-1}}=s_{3}^{-1}, & \text { if }\left[s_{2}, x\right]=1,\end{cases}$
we have $M_{3}^{\prime}=\left[G^{\prime}, M_{3}\right]=\left(G^{\prime}\right)^{x y^{-1}-1}=\left\langle s_{2}^{x y^{-1}-1}\right\rangle=\left\langle s_{3}\right\rangle$
and $M_{3} / M_{3}^{\prime}=\left\langle x y^{-1}, s_{2}, s_{3}\right\rangle /\left\langle s_{3}\right\rangle=\left\langle x y^{-1}, s_{2}\right\rangle /\left\langle s_{3}\right\rangle$, in any case.
Since $M_{4} / \Phi(G)$ is cyclic and $x^{3} \in \zeta_{1}(G)$, we have

$$
M_{4}^{\prime}=\left[\Phi(G), M_{4}\right]=\left[G^{\prime}, M_{4}\right]=\left(G^{\prime}\right)^{y-1}=\left\langle s_{2}^{y-1}\right\rangle=\left\langle\left[s_{2}, y\right]\right\rangle= \begin{cases}1, & \text { if }\left[s_{2}, y\right]=1 \\ \left\langle s_{3}\right\rangle, & \text { if }\left[s_{2}, x\right]=1\end{cases}
$$

and $M_{4} / M_{4}^{\prime}=\left\langle x^{3}, y, s_{2}, s_{3}\right\rangle /\left\langle s_{3}\right\rangle=\left\langle x^{3}, y, s_{2}\right\rangle /\left\langle s_{3}\right\rangle$, if $\left[s_{2}, x\right]=1$,
but $M_{4} / M_{4}^{\prime} \simeq M_{4}=\left\langle x^{3}, y, s_{2}, s_{3}\right\rangle$, if $\left[s_{2}, y\right]=1$.
These formulas admit to give upper bounds for the 3-rank of the abelianisations. Whereas M_{2} / M_{2}^{\prime} and M_{3} / M_{3}^{\prime} are at most of 3-rank 2 , the 3-rank of M_{1} / M_{1}^{\prime} is bounded by 2 , if $\left[s_{2}, y\right]=1$, and by 3 , if $\left[s_{2}, x\right]=1$. The biggest 3-rank 4 can occur for M_{4} / M_{4}^{\prime}, if $\left[s_{2}, y\right]=1$, and is bounded by 3 , if $\left[s_{2}, x\right]=1$.

Since the source of all transfers $\mathrm{V}_{i}: G / G^{\prime} \rightarrow M_{i} / M_{i}^{\prime}$ can be represented by the generators as $G / G^{\prime}=\left\{x^{j} y^{\ell} G^{\prime} \mid 0 \leq j<9,0 \leq \ell<3\right\}$, the possible transfer kernels $\operatorname{ker}\left(\mathrm{V}_{i}\right)$ are either of dimension 1 (partial), $\tilde{M}_{1} / G^{\prime}=\left\{y^{\ell} G^{\prime} \mid 0 \leq \ell<3\right\}, \varkappa(i)=1$, or $\tilde{M}_{2} / G^{\prime}=\left\{x^{3 \ell} y^{\ell} G^{\prime} \mid 0 \leq \ell<3\right\}$, $\varkappa(i)=2$, or $\tilde{M}_{3} / G^{\prime}=\left\{x^{-3 \ell} y^{\ell} G^{\prime} \mid 0 \leq \ell<3\right\}, \varkappa(i)=3$, or $\tilde{M}_{4} / G^{\prime}=\left\{x^{j} G^{\prime} \mid j=0,3,6\right\}, \varkappa(i)=4$, or of dimension 2 (total), $M_{4} / G^{\prime}=\left\{x^{j} y^{\ell} G^{\prime} \mid j=0,3,6,0 \leq \ell<3\right\}, \varkappa(i)=0$.

To calculate the punctured transfer kernel type (TKT) $\varkappa(G)$, we need explicit expressions for the transfers $\mathrm{V}_{i}=\mathrm{V}_{G, M_{i}}$ from G / G^{\prime} to the abelianisations of the maximal subgroups M_{i} / M_{i}^{\prime}, based on equation (3).

For our fixed arrangement of the maximal subgroups of $G=\langle x, y\rangle$, we have $x \in M_{1}$ but $x \notin M_{2}, M_{3}, M_{4}$ and $y \in M_{4}$ but $y \notin M_{1}, M_{2}, M_{3}$. Consequently, the following transfer images are powers, $\mathrm{V}_{i}\left(x G^{\prime}\right)=x^{3} M_{i}^{\prime}$ for $2 \leq i \leq 4$ and $\mathrm{V}_{i}\left(y G^{\prime}\right)=y^{3} M_{i}^{\prime}$ for $1 \leq i \leq 3$. However, for the remaining transfer images we need a formula for the action of third trace elements as symbolic exponents. According to [15, Thm.3.1,(6)], we have
$\mathrm{V}_{1}\left(x G^{\prime}\right)=x^{\mathrm{S}_{3}(y)} M_{1}^{\prime}=x^{1+y+y^{2}} M_{1}^{\prime}=x^{3}[x, y]^{3}[[x, y], y] M_{1}^{\prime}=x^{3} s_{2}^{-3}\left[s_{2}^{-1}, y\right] M_{1}^{\prime}=x^{3} s_{2}^{-3}\left[s_{2}, y\right]^{-s_{2}^{-1}} M_{1}^{\prime}=$
$= \begin{cases}x^{3} s_{2}^{-3} M_{1}^{\prime}, & \text { if }\left[s_{2}, y\right]=1, \\ x^{3} s_{2}^{-3} s_{3}^{-1} M_{1}^{\prime}, & \text { if }\left[s_{2}, x\right]=1,\end{cases}$
and $\mathrm{V}_{4}\left(y G^{\prime}\right)=y^{\mathrm{S}_{3}(x)} M_{4}^{\prime}=y^{1+x+x^{2}} M_{4}^{\prime}=y^{3}[y, x]^{3}[[y, x], x] M_{4}^{\prime}=y^{3} s_{2}^{3}\left[s_{2}, x\right] M_{4}^{\prime}=$
$= \begin{cases}y^{3} s_{2}^{3} s_{3} M_{4}^{\prime}, & \text { if }\left[s_{2}, y\right]=1, \\ y^{3} s_{2}^{3} M_{4}^{\prime}, & \text { if }\left[s_{2}, x\right]=1 .\end{cases}$
Summarised, $\mathrm{V}_{i}\left(x^{j} y^{\ell} G^{\prime}\right)=x^{3 j} y^{3 \ell} M_{i}^{\prime}$, if either $2 \leq i \leq 3$ or $i=1,\left[s_{2}, y\right]=1$ or $i=4$, $\left[s_{2}, x\right]=1$, but exceptionally $\mathrm{V}_{1}\left(x^{j} y^{\ell} G^{\prime}\right)=x^{3 j} s_{3}^{-j} y^{3 \ell}$, if $\left[s_{2}, x\right]=1$ and thus $M_{1}^{\prime}=1$, and $\mathrm{V}_{4}\left(x^{j} y^{\ell} G^{\prime}\right)=x^{3 j} y^{3 \ell} s_{3}^{\ell}$, if $\left[s_{2}, y\right]=1$ and thus $M_{4}^{\prime}=1$.

To determine the transfer kernel we have to solve the equation $\mathrm{V}_{i}\left(x^{j} y^{\ell} G^{\prime}\right)=1 \cdot M_{i}^{\prime}$ with respect to j and ℓ.

For the standard case this can be done independently from the details of the presentation of the group G. If either $2 \leq i \leq 3$ or $i=1,\left[s_{2}, y\right]=1$ or $i=4,\left[s_{2}, x\right]=1$, then we have uniformly $M_{i}^{\prime}=\left\langle s_{3}\right\rangle=\gamma_{3}(G)$ and $\overline{\mathrm{V}}_{i}\left(x^{\bar{j}} y^{\ell} G^{\prime}\right)=x^{3 j} y^{3 \ell} M_{i}^{\prime}=M_{i}^{\prime}$, i.e. $x^{3 j} y^{3 \ell} \in\left\langle s_{3}\right\rangle$, implies $3 \mid j$ but admits arbitrary ℓ, since $x^{9}, y^{3} \in\left\langle s_{3}\right\rangle$, in any case. Consequently, $\varkappa(i)=0$, generally in the standard case.

The exceptional cases, however, depend on the isomorphism class of the group G.
There are 8 isomorphism classes of 2-generator groups $G=\langle x, y\rangle$ in the first branch of Φ_{3} and table 5 gives 3 representatives for each isomorphism class in the notation of GAP 4.4 [10], James [12, p.620, 4.5], and Ascione, Havas, Leedham-Green [3, p.272, 7] resp. [1, p.79, Fig.5.4]. A common feature of all 8 isomorphism classes are the relations $s_{2}=[y, x], s_{2}^{3}=1, s_{3}^{3}=1$ and we only give the remaining relations for $\left[s_{2}, x\right],\left[s_{2}, y\right], x^{9}$, and y^{3}.

Table 5. Representatives of the 8 isomorphism classes in branch 1 of Φ_{3}

GAP 4.4	James	Ascione	$\left[s_{2}, x\right]$	$\left[s_{2}, y\right]$	x^{9}	y^{3}
$\langle 243,20\rangle$	$\Phi_{3}\left(31^{2}\right)_{b_{1}}$	B	1	s_{3}	s_{3}^{-1}	1
$\langle 243,19\rangle$	$\Phi_{3}\left(31^{2}\right)_{b_{2}}$	C	1	s_{3}	s_{3}	1
$\langle 243,16\rangle$	$\Phi_{3}\left(31^{2}\right)_{a}$	F	s_{3}	1	s_{3}	s_{3}^{-1}
$\langle 243,18\rangle$	$\Phi_{3}\left(2^{2} 1\right)_{a}$	D	1	s_{3}	1	s_{3}^{-1}
$\langle 243,14\rangle$	$\Phi_{3}\left(2^{2} 1\right)_{b_{2}}$	H	s_{3}	1	1	s_{3}
$\langle 243,13\rangle$	$\Phi_{3}\left(2^{2} 1\right)_{b_{1}}$	E	s_{3}	1	1	1
$\langle 243,15\rangle$	$\Phi_{3}\left(21^{3}\right)_{d}$	G	s_{3}	1	1	s_{3}^{-1}
$\langle 243,17\rangle$	$\Phi_{3}\left(21^{3}\right)_{e}$	A	1	s_{3}	1	1

References

[1] J. Ascione, On 3-groups of second maximal class (Ph.D. Thesis, Australian National University, Canberra, 1979).
[2] J. Ascione, On 3-groups of second maximal class, Bull. Austral. Math. Soc. 21 (1980), 473-474.
[3] J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17 (1977), 257-274, Corrigendum 317-319, Microfiche Supplement p. 320 .
[4] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat. (Ser. 3) 1 (1898), 137-228.
[5] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
[6] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating p-groups by coclass with GAP, Computational group theory and the theory of groups, 45-61 (Contemp. Math. 470, AMS, Providence, RI, 2008).
[7] B. Eick and D. Feichtenschlager, Infinite sequences of p-groups with fixed coclass, preprint, 2010.
[8] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass, Bull. London Math. Soc. 40 (2008), 274-288.
[9] B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O'Brien, On the classification of groups of primepower order by coclass: The 3-groups of coclass 2 (preprint, 2011).
[10] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008, (http://www.gap-system.org).
[11] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
[12] R. James, The groups of order p^{6} (p an odd prime), Math. Comp. 34 (1980), nr. 150, 613-637.
[13] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002.
[14] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math. 35 (1980), 193-203.
[15] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. (2010), DOI 10.1007/s00605-010-0277-x.
[16] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory (2010).
[17] D. C. Mayer, Principalisation algorithm via class group structure, J. Th. Nombres Bordeaux (2011).
[18] D. C. Mayer, The distribution of second p-class groups on coclass graphs (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011).
[19] D. C. Mayer, Stem and branch groups of isoclinism families (preprint, 2011).
[20] B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem (Inauguraldissertation, Band 1, Universität zu Köln, 1989).
[21] B. Nebelung, Anhang zu Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ $(3,3)$ und Anwendung auf das Kapitulationsproblem (Inauguraldissertation, Band 2, Universität zu Köln, 1989).
[22] M. F. Newman and E. A. O’Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), 131-169.
[23] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math. 171 (1934), 19-41.
[24] O. Schreier, Über die Erweiterung von Gruppen I, Monatsh. Math. Phys. 34 (1926), 165-180.
[25] O. Schreier, Uber die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321-346.
[26] O. Taussky, A remark concerning Hilbert's Theorem 94, J. Reine Angew. Math. 239/240 (1970), 435-438.
Naglergasse 53, 8010 Graz, Austria
E-mail address: algebraic.number.theory@algebra.at
URL: http://www.algebra.at

