METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE (9,3)

DANIEL C. MAYER

ABSTRACT. Presentations of metabelian 3-groups G with abelianisation G/G’ of type (9, 3) are
used to determine explicit expressions for the transfers V; from these groups to their maximal
normal subgroups M;, and to calculate the transfer kernels ker(V;) in G/G’ and the structure
of the transfer targets M%/MZ’7 for 1 <i<4.

1. INTRODUCTION

We consider metabelian 3-groups G = (x, y) with two generators satisfying #° € G’ and y* € G’

and commutator quotient group G/G’ of type (9, 3). Generally, such a group possesses
e four normal subgroups of index 9,

Ml = <y7G/>7 MQ = <$3y,G,>, M3 = <:E3y71,G/>, M4 = <£B3,G/>,
e and four maximal normal subgroups of index 3,

Ml = <val>7 M2 = <xyaGl>a M3 = <xy—17Gl>7 M4 = <$37y,G/>-
We use the subscript 4 to indicate that for My = H?Zl M; the factor group My /G = (z3,y) is
bicyclic of type (3, 3), whereas M; /G’ is cyclic of order 9, for 1 < i < 3, and that My =N} ; M; =
®(G) = G3G’ coincides with the Frattini subgroup of G, whereas M; is only contained in My, for
1<4<3.

FIGURE 1. Double diamond head of a group G with G/G’ of type (9, 3)

G =7(G)
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2. COMMON FORMULAS FOR 2-GENERATOR GROUPS OF SMALL CLASS

Let G = (x,y) be a group with two generators z,y. Define the main commutator by
so = [y, x] € 72(G) and the threefold commutators by s3 = [s2, 7], t3 = [s2,y] € 13(G).
Then yx = zyly, x] = TYSa, Sa& = xS2[S2, ] = TS283, and s2y = Ys2[s2, y] = ysats.

If G is metabelian, then

[521739} = [s2, 2] % :5382 :331a [821ay] :7[£S27y] "2 :tg52 :t317
and [s; Ly =[s; Ly Y = ()Y = tlg = t3, if t3 lies in the centre (1 (G).
—1 T _ -1 — — _ —_
Consequently, [y, 2] = [y, 2]V =5, = (s; 1)y = 52 1[52 Ly "= s, 3.

After this preliminary commutator calculus, we prove two formulas for 3rd powers of products
of the generators of a metabelian 2-generator group G, now assuming that ss,t3 belong to the
centre (1(G).

(1) (2y)® = 2%y sissts,
(2) (zy™ )3 = 2y 3sy%s5 5.

Proof. (zy)® = zyzyzy = 2Yseaysey = T2Yrs283ysay = T2TYS2S2ySayss = T3YSaysatsysatsss =
= x3yy52t3y32t35283t§ = x3y252y5353t§ = J;3y2y32t33333t§ = $3y3s§33t§
and (zy~')3 = zy ey toy ™t = say~ y alay Ty 2y Tt = 2Py~ lsy Msay sy ey Tt =
= ny*lwsgl[Sil,f]y”lyflsz_ll[%l, y~'t3 = z2x1y*152;115332—113?;117;*13/*132—1t3t§ =
= x3y*1327 y’lsg t3s5 y’lsg t% = x?’yfly’ls; t3s9 y*1327 Sg tg =
25y ty~t Lsg Mty 285 1t = ady =35y 355 5. O

.3 —1; —1.-1,6 _ .3, -2, — =
=T°Y "8y Y "8y 1355 S5 t3 =Y "y Sy

3. S3-DOUBLE ORBITS OF PUNCTURED TRANSFER KERNEL TYPES

The transfer V; (Verlagerung) from G to its maximal subgroup M; is given by

g°, ifge G\ M;,

3 Vi=Veur, : G/G — MM, g
( ) G,M; / / ir 9 {933(h)7 lfg c M’“

where S3(h) = 1+ h + h? € Z|G], with an arbitrary element h € G \ M;, denotes the third trace
element (Spur) in the group ring, acting as a symbolic exponent.

There are five possibilities for the kernel of V;, for each 1 < ¢ < 4. Either ker(V;) = Mj/G’,
for some 1 < j < 4, and we denote the one-dimensional transfer by the singulet »(i) = 7,
or ker(V;) = My/G’, and we denote the two-dimensional transfer by (i) = 0. Due to the
distinguished role of the subscript 4, we combine the singulets to form a multiplet

s = ((3(1),5(2), #(3)); #(4)) € [0,4]° x [0,4]

which we call the punctured transfer kernel type (TKT) of the group G with respect to the selected
generators.

To be independent from the choice of generators and the order of My, Mo, M3 and My, My, Ms,
we define the double orbit

29355 = {5007 | 0,7 € S5}

of > under the operation of S3 X S3 as an isomorphism invariant s(G) of G. Here, & denotes the
extension of ¢ from [1, 3] to [0,4] which fixes 0 and 4 and 7 denotes the extension of 7 from [1, 3]
to [1, 4] which fixes 4.

Two further isomorphism invariants of G are p = p(G) = #{1 < i < 4| (i) = 4} and the
number of two-dimensional transfers v = v(G) = #{1 < i <4 | »(i) = 0}.
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4. COMBINATORIALLY POSSIBLE PUNCTURED TRANSFER KERNEL TYPES

In this section, we arrange all combinatorially possible Ss-double orbits of the 5% punctured
quadruplets s € [0, 4]% x [0, 4] by increasing invariant 0 < y < 4 and cardinality of the image. Table
1 shows the punctured quadruplets with invariant ¥ = 0 and Table 2 the punctured quadruplets
with invariant 1 < v < 4 as possible punctured transfer kernel types of 3-groups G with G/G" of
type (9, 3), resp. punctured principalisation types of number fields K with 3-class group Cls(K) of
type (9,3), according to Artin’s reciprocity law [15]. The double orbits are divided into sections,
denoted by letters, and identified by ordinal numbers.

We denote by o(s) = (|1 {i}|)o<i<a the family of occupation numbers of the selected double
orbit representative s and by & the quadruplet of Taussky’s conditions [26] associated with sr.

If a double orbit 3%5s can be realised as a punctured transfer kernel type (G), then a
suitable 3-group G is given in the notation of James [12], using Hall’s isoclinism families [11].

Table 1 gives a coarse classification into sections A to E, an identification by ordinal numbers
1 to 20, and a set theoretical characterisation.

TABLE 1. The 20 S3-double orbits of s € [1,4]* with v =0

repres. occupation Taussky charact. cardinality realising
Sec. Nr. | of dbl.orb. | numbers cond. property of dbl.orb. 3-group

P o(x) K | 358> 93| G
A 1 (1111) (04000) (BBBA) constant 3 D,(31)
B 2 (1112) (03100) (BBBA) nearly 6 777
B 3| (1121) (03100)  (BBBA) constant 18
C 4 (1122) (02200) (BBBA) 18 777
D 5 (1123) (02110) (BBBA) 18
D 6 (1231) (02110) (BBBA) 18 777
B 7| (1114) (03001)  (BBBA) nearly 3 D6(321)p, ,, P(321)s, ,
B 8| (1141) (03001)  (BBAA) constant 9
D 9 (1124) (02101) (BBBA) 18 777
D 10| (1142) (02101)  (BBAA) 18 777
D 11 (1241) (02101) (BBAA) 36 D4(321) 4, , P6(321),4,
E 12 (1234) (01111) (BBBA) per- 6 6 (321)p, ,, P6(321)s, ,
E 13 (1243) (01111)  (BBAA) mutation 18
C 14 (1144) (02002) (BBAA) 9
CcC 15 (1441) (02002) (BAAA) 9
D 16 (1244) (01102) (BBAA) 18 77
D 17 (1442) (01102) (BAAA) 18 777
B 18 (1444) (01003) (BAAA) nearly 9 77
B 19 (4441) (01003) (AAAA) constant 3 777
A 20| (4444) (00004)  (AAAA) constant 1 Dg(221%),, P2(22), Ps(32)

Total number: 256
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Table 2 gives a coarse classification into sections a to e, an identification by ordinal numbers 1

to 32, and a set theoretical characterisation.

Ywithl<v<4

TABLE 2. The 32 S3-double orbits of s € [0,4]* \ [1, 4]

S
\h—W o
2. pa
N I\ 2/«.%\
= = | o
)
ST N
- — o
e A, S s & s QCH A < <
= ~|—~ m —~ ol —~ — —
= 2 32_@ o Y@1_1. N N
n o — |~ — & ™ — —
= 5 Ola|em - o -~ & Q
ag ((1@ ~— 1.@(\( (o] [aN]
o »|l o = © Py ~— ~—~
e (SRS o o | B © ©
- — — | e A KA
= N Ll s
& o -
~ S |5
— N
3\ ~—
< &
2 a —
< o
; X o0 oo o © 00|00 9] [e9] L © oo e o]
mm&13999119313116139919191313319931%
5o N
o O
. = I
. + + + + +
B £ 2| > 9 > 9 | > 9 i > 28
g @ =l 8 o = L Elm 8 L =2 og = S
+ + + = + etO at2
Mp ®wn| & w c W etaS = E-— 2]
o g1 < 2 o g a5y = g P o g |
= = ol = ©° = 2 = Q2 = S Qs
© o o o o = o S
Nej
g
> ~ |~ | "]~ | |~ |~ " N~ |~ ~|~ ~ |~ —~| 0
R s e DSl Dbl Dbl e e Al DTl Dl D i S S I
R b B B R e R e e Nl i s il st el Bl i f B st =
£ 3 SIS TIITRITRRNARN NN QT DS SRR SRS IS SA
& << << d/< d/<“ s s gt gSs <<t <A@S<AQic<|< <@ <|z
M N [ Y | [ — | | I T N e T e N | N T N T N N | o
o
=
=
2 g oSl ol ologo|loaglao ol ol ool ol ol ala || o
MM\%}OOOOOOOOOOOOllOOOOOOOOOOOOOOOOOO
pm(\00000110011111000000001110000000
= SIQ I 4| QQId 4w v AN NH A0 Q4 —=H AN N N|H A H O O = O O
o = [N MM AN NN N[H A A |~ AN NN NN |~ A A~~~ AN N[~ A |~
Cn S| N N N N [ N N N N | N N N N N N N N T N N S N N N N N N N
o
A< N R SR S Sy (S S SRy Y Py BN FE R
o © Ol Ol Ol N O|lH O N A OlMN Ol Ol 4 Ol 4 Ol N O|IF O 4 O O
P S N =0 (e B e T e S S B s SO OO B I O ==l e D~ N e B M (K SIS G v s S A 1 I M
o, Q0 oo 41 A4 A |4 4 |4 NI ©O/© © A" =4 A |4 4 N O F |-+ F <FH|F
o T OO0 OO0 O O /4|0 © 4|0 4|0 OO0 © Ol O 410 o 40 ol o —H o
= Nl RNl Rl Nl N NI BNl N NPT N NPT Rl N il N N NI NN NI NNl NN NI NN
[}
o — AN N[H O[O |0 DD = NN FH|(O O 0 O = NN H O[O -0 & O+ N
. N o~ [ A | A ~H AN AN NN AN NN NN NN MmN DM
IS S|l Q0 ©OT” "L QT T U0 9l 0T T T T T T O 00 0o|lT T T|IL L0
[}
n




METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE (9, 3) 5

5. ACTUAL REALISATION OF PUNCTURED TRANSFER KERNEL TYPES

In this section, we characterise all punctured quadruplets s € [0,4]* which can be realised
as punctured transfer kernel types of metabelian 3-groups G with abelianisation G/G’ of type
(9,3). For this purpose we assume that G occurs as the second 3-class group Gal(F3(K)|K) [16]
of an algebraic number field K with 3-class group Clz(K) of type (9, 3). Then the structure of the
abelianisations M;/M! of the maximal normal subgroups M; of G, which we call the transfer target
type (TTT) 7 of G, is identical with the structure of the 3-class groups Cls(N;) of the unramified
cyclic cubic extensions N;| K, for 1 < i < 4. Further, the structure of the abelianisation M, / M 4 of
the distinguished normal subgroup My = ®(G) of index 9 in G is identical with the structure of the
3-class group Clg (N4) of the Frattini extension, the unique unramified bicyclic bicubic extension
N4|K. The isomorphism invariant ¢ = £(G) denotes the number of 3-class groups Cls(N;) of
3-rank at least 3. In the case of a quadratic base field K = Q(v/D) with discriminant D, the
3-class numbers h; = h3(L;) of the non-Galois absolutely cubic subfields L; of the NN; can be used
additionally for the characterisation.

Table 3 lists the 13 isomorphism classes of 3-groups G with abelianisation G/G’ of type (9, 3)
in the isoclinism family ®g [19]. They form branch 1 of this family, whence their order, nilpotency
class, and coclass [14] are given by |G| = 3%, cl(G) = 3, cc(G) = 3, whereas the stem groups of
®g have |G| = 3%, cl(G) = 3, cc(G) = 2. Generally, the nilpotency class cl(G) = 3 is a family
invariant of ®¢. | denotes a descendant.

TABLE 3. TKT and TTT of 3-groups in branch 1 of isoclinism family ®¢ or descendants

type s | hy hy | Cl3(N;) Clg(Ny) Clg(N3) Clg(Ny) e | Clg(Ny) min. |D| group

D11 (4232) | 3 3 ](9,3,3) (27,3)  (27,3)  (9,3,3) 2| (9,3,3) |-3299| | ®6(321),,
D11 (4322) | 3 3 |(9,3,3) (27,3)  (27,3)  (9,3,3) 2| (9,3,3) 255973 | ®6(321),,
B7 (1114) | 3 3| (27,3)  (27.3)  (27.3) (3,3,3,3) 1| (9,3,3,3) | |-54695| | ®6(321),, |
B7 (1114) | 3 3| (27,3)  (27.3)  (27.3) (3,3,3,3) 1| (9,3,3,3) | 1664444 | ®6(321),, |
E12 (1234) | 3 3| (27,3)  (27,3)  (27,3)  (9,3,3) 1| (9,9,3) |=5703| | ®6(321)p,, |
E12 (1324) | 3 3| (27,3)  (27,3)  (27,3)  (9,3,3) 1| (9,9,3) 1893032 | ®6(321)p,, +
d.10  (0112) (9,3,3)  (27,3)  (27,3)  (9,3,3) 2| (9,3,3) D(31%),
e.14  (1320) (27,3)  (27,3)  (27,3)  (9,3,3) 1| (9,3,3) D6(31%)s,
el4  (1230) (27,3)  (27,3)  (27,3)  (9,3,3) 1| (9,3,3) D (313),,
A20 (4444) | 3 3 1(9,3,3) (9,3,3) (9,3,3) (3,3,3,3) 41(9,9,3,3,3) | |-289704| | ®¢(2212), ]
c.27  (0440) (9,3,3)  (9,3,3)  (9,3,3)  (9,3,3) 4| (3,3,3,3) D6(2212)y,,
b.31  (0444) (9,3,3)  (9,3,3)  (9,3,3)  (9,3,3) 4| (3,3,3,3) D(2212)p,,
b.15  (0004) (9,3,3)  (9,3,3)  (9,3,3) (3,3,3,3) 4| (3,3,3,3) Dg(21%)4
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In Table 4 we give the 12 isomorphism classes of 3-groups G with abelianisation G/G’ of type
(9, 3) in the isoclinism families @9, &3, and Pg. For ®o, they form branch 1 of this family, whence
their order and coclass are given by |G| = 3%, cc(G) = 2, whereas the stem groups of ® have
|G| = 33, cc(G) = 1. The class cl(G) = 2 is a family invariant of ®3. For ®3, they form branch 1
of this family, whence their order and coclass are given by |G| = 3%, cc(GQ) = 2, whereas the stem
groups of ®3 have |G| = 3%, cc(G) = 1. The class cl(G) = 3 is a family invariant of ®3. Finally,
the stem of ®g consists of a unique isomorphism class with |G| = 3%, cl(G) = 3, cc(G) = 2.

l denotes a descendant.

TABLE 4. TKT and TTT of 3-groups in isoclinism families ®5, $3, Pg or descendants

type s | h; hy | Cl3(Ny) Cl3(Ny) Clg(Ns) Clg(Ny) e | Cl3(Ny) | min. |D) group
Al (1111) (27) (27) (27) (9,3) 0 (9) D4 (31)
A20 (4444) (9,3) (9,3) (9,3) 9,3) 0| (3,3 Dy(22)
a.l  (0000) (9,3) (9,3) (9,3)  (3,3,3) 1| (3,3) D(212).
b2 (0001) | 3 3| (9,3) (9,3) (9,3)  (9,3,3) 1] (9,3) 529393 | ®3(31%),
b3 (1000) | 3 3 | (27,3)  (9,3) (9,3)  (3,3,3) 1| (9,3) 635909 | ®3(312),
b3  (1000) | 3 3 | (27,3)  (9,3) 9,3)  (3,3,3) 1] (9,3) 946733 | ®3(31%),
b.16  (4000) | 3 3 | (9,3,3)  (9,3) (9,3)  (3,3,3) 2| (3,3,3) | 282461 | ®3(2%1),
b.15 (0004) | 3 3 | (9,3) (9,3) (9,3)  (3,3,3,3) 11(3,3,3,3) | 3763580 | ®3(221)y, |
b.15  (0004) | 3 3 | (9,3) (9,3) (9,3)  (9,3,3) 1] (9,3,3) | 700313 | ®3(221)y, |
al  (0000) | 9 3| (9,3) (9,3) (9,3)  (9,9,3) 1] (9,9,3) | 783689 | ®3(21%)4 |
a.l  (0000) | 9 3 |(993) (9,3 (9,3)  (3,3,3) 2| (9,9,3) | 626264 | ®3(21%). ]
A20 (4444) (9,3) (9,3) (9,3) 9,3) 0| (9,3 Dg(32)




METABELIAN 3-GROUPS WITH ABELIANISATION OF TYPE (9, 3) 7

6. 3-GROUPS OF THE FIRST BRANCH OF ISOCLINISM FAMILY ®3

Generally, the p-groups G of isoclinism family ®3 are characterized by the nilpotency class
cl(G) = 3 [12, p.618, 4.1]. Their common central quotient G/(1(G) is the extra special p-group
G3(0,0) of order p? and of exponent p [15, Thm.2.5]. For the 2-generator groups G = (x,y) in
®3, the structure of their lower central series (7v;(G));>1 can be expressed by means of the main
commutator, s2 = [y, z] € v2(G) = [G, G], and the threefold commutator in v3(G) = [y2(G), G,

o = {[sz,x], if [s2,y] =1,
[Sg,y], if [52,1‘] =1.
The groups are metabelian with v2(G) = (s2, s3) of type (p,p) and v3(G) = (s3) cyclic of order p.
The 2-generator groups in the first branch of ®3 have order |G| = p°, coclass cc(G) = 2 and
abelianization G/G’ of type (p?,p). If we select the generators of G = (x,y) such that e &
and y? € G'.
In the special case p = 3, the 4 maximal subgroups of G are given by

M, = <x’Gl>7 My = <xyaGl>a M; = <xy_l7G/>v My = <$37y,G'>-

To calculate the transfer target type (TTT) 7(G), we need generators for the commutator
quotients of the maximal subgroups. According to [5, p.52, Lem.2.1], we have

(s3), if [s9,9] = 1,

M{ =[G, Mi] = (G = (s577) = ([s2,2]) = {1

, if [s2,2] =1,
and My /M| = (x, s2,83)/(s3) = (x, 82)/(s3), if [s2,y] = 1,
but My /M{| ~ My = (x, 52, 83), if [s9,z] = 1.

Since

wy— 1-8% =s3, if[s0,y] =1,
szy1—[527o:y1—[52,y][s2,x1y—{ 3= s, iffs2y]

ie. s3¥71 = 53 in any case, we have M} = [G', My] = (G')™~1 = (53" 1) = (s3)

and My /Mj = (xy, s2,53)/(s3) = (zy, s2)/(s3)-
Since

S3'1y283, if [82,1‘] :17

1 B _ -1 -1 -1
57 = say ] = sy lse, @ = syl s, 2l ={ LT

we have Mj =[G/, Ma] = (G') =1 = (53 ~") = (s3)
and M3/M} = (xy™', s2,83)/(s3) = (xy~!, s2)/(s3), in any case.
Since M, /®(G) is cyclic and z* € (1(G), we have

M = [®(G), My] = [G', Ma] = (G")" " = (s§77) = ([s2.9]) = {

and My/Mj = (x3,y, s2,53)/(s3) = (23,9, 52)/(s3), if [s2,2] =1,
but My/Mj ~ My = (23,y, 52, 83), if [s2,9] = 1.

These formulas admit to give upper bounds for the 3-rank of the abelianisations. Whereas
My /M and Ms/Mj are at most of 3-rank 2, the 3-rank of M;/M] is bounded by 2, if [s2,y] = 1,
and by 3, if [s2,2] = 1. The biggest 3-rank 4 can occur for My/Mj, if [s2,y] = 1, and is bounded
by 3, if [se, 2] = 1.

17y7 : 5371 = S3, if [527y] = 17
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Since the source of all transfers V; : G/G' — M;/M] can be represented by the generators
as G/G' = {27y*'G’' | 0 < j <9, 0 < ¢ < 3}, the possible transfer kernels ker(V;) are either of
dimension 1 (partial), M; /G’ = {y*G’ | 0 < £ < 3}, (i) = 1, or My/G" = {a34*G" | 0 < ¢ < 3},
2#(i) = 2, or M3/G' = {z=3y'G" | 0 < £ < 3}, »(i) = 3, or My/G' = {27G" | j = 0,3,6}, (i) = 4,
or of dimension 2 (total), My /G’ = {z7y*G" | j = 0,3,6, 0 < £ < 3}, »(i) = 0.

To calculate the punctured transfer kernel type (TKT) 5(G), we need explicit expressions for
the transfers V, = Vg u, from G/G’ to the abelianisations of the maximal subgroups M;/M/,
based on equation (3).

For our fixed arrangement of the maximal subgroups of G = (z,y), we have x € M; but
x ¢ Mo, M5, My and y € My but y ¢ My, My, M3. Consequently, the following transfer images
are powers, V;(zG’') = x3M] for 2 < i < 4 and V;(yG’) = y>M] for 1 < i < 3. However, for the
remaining transfer images we need a formula for the action of third trace elements as symbolic
exponents. According to [15, Thm.3.1,(6)], we have
Vi(2G') = 252 W) M] = a4+ M{ = 23[, y?[[z, ], y)M{ = %55 [s5 1 y] M = 2555 [s,y) 52 M =
_ JatsytMy, if [s2,9] = 1,

235y st MY, if [sg,2] = 1,
and Vy(yG') = g3 @ Mj = g+ My = g2y, o[y, 2], 2] M} = P s3[s2, 2] M} =
_JyPsissMy,  if [so,y] =1,

y3s3Mj, if [s9,2] = 1.

Summarised, V;(z7y*G’) = x*y3* M/, if either 2 < i < 3 ori = 1, [s9,y] = 1 or i = 4,
[s2,7] = 1, but exceptionally Vi(27y’G’) = x3js§jy3e, if [s9,2] = 1 and thus M; = 1, and
Vi(27ytG") = a37y3'sE, if [s2,y] = 1 and thus M} = 1.

To determine the transfer kernel we have to solve the equation V;(2/y‘G’) = 1- M with respect
to j and /.

For the standard case this can be done independently from the details of the presentation of
the group G. If either 2 <i <3 ori=1, [sg,y] =1 or i =4, [s9,2] = 1, then we have uniformly
M] = (s3) = 13(G) and V;(27y*G") = 2%7y3* M} = M/, i.e. 237y>* € (s3), implies 3 | j but admits
arbitrary ¢, since 2%, y> € (s3), in any case. Consequently, s(i) = 0, generally in the standard
case.

The exceptional cases, however, depend on the isomorphism class of the group G.

There are 8 isomorphism classes of 2-generator groups G = (z,y) in the first branch of &3
and table 5 gives 3 representatives for each isomorphism class in the notation of GAP 4.4 [10],
James [12, p.620, 4.5], and Ascione, Havas, Leedham-Green [3, p.272, 7] resp. [1, p.79, Fig.5.4].
A common feature of all 8 isomorphism classes are the relations sy = [y, z], s3 = 1, s3 = 1 and we
only give the remaining relations for [s2, x], [s2,y], %, and y3.

TABLE 5. Representatives of the 8 isomorphism classes in branch 1 of &3

GAP 4.4  James  Ascione | [s2,2] [s2,y] 2% 93
(243,20)  ®3(312);, B 1 s3  s3t 1
(243,19)  ®3(312),, C 1 s3 sz 1
(243,16)  ®3(31%), F 53 1 53 S5
(243,18)  ®3(221), D 1 s3 1 s3!
(243,14)  ®3(2%1)y, H 53 1 1 s3
(243,13)  ®3(2%1),, E 53 1 11
(243,15)  ®3(21%)4 G s3 1 1 3t
(243,17)  ®3(213), A 1 s3 1 1
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