Bibliographical References:
[Ag]
M. Arrigoni,
On Schur σ-groups,
Math. Nachr.
192
(1998),
71 - 89.
[Ar1]
E. Artin,
Beweis des allgemeinen Reziprozitätsgesetzes,
Abh. Math. Sem. Univ. Hamburg
5
(1927),
353 - 363.
[Ar2]
E. Artin,
Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz,
Abh. Math. Sem. Univ. Hamburg
7
(1929),
46 - 51.
[AHL]
J. A. Ascione, G. Havas, and C. R. Leedham-Green,
A computer aided classification
of certain groups of prime power order,
Bull. Austral. Math. Soc.
17
(1977),
257 - 274,
Corrigendum
317 - 319,
Microfiche Supplement
p.320.
[As1]
J. A. Ascione,
On 3-groups of second maximal class,
Ph.D. Thesis,
Austral. National Univ.,
Canberra,
1979.
[As2]
J. A. Ascione,
On 3-groups of second maximal class,
Bull. Austral. Math. Soc.
21
(1980),
473 - 474.
[Bg]
G. Bagnera,
La composizione dei gruppi finiti
il cui grado è la quinta potenza di un numero primo,
Ann. di Mat.
(Ser. 3)
1
(1898),
137 - 228.
[Be]
K. Belabas,
Topics in computational algebraic number theory,
J. Théor. Nombres Bordeaux
16
(2004),
19 - 63.
[Bb]
T. Bembom,
The capitulation problem in class field theory,
Dissertation,
Georg-August-Universität Göttingen,
2012.
[BEO]
H. U. Besche, B. Eick, and E. A. O'Brien,
SmallGroups - a library of groups of small order,
2005,
a refereed GAP 4 package.
[Bl1]
N. Blackburn,
On a special class of p-groups,
Acta Math.
100
(1958),
45 - 92.
[Bl2]
N. Blackburn,
On prime-power groups in which the derived group has two generators,
Proc. Camb. Phil. Soc.
53
(1957),
19 - 27.
[Boe]
R. Bölling,
On ranks of class groups of fields in dihedral extensions over Q
with special reference to cubic fields,
Math. Nachr.
135
(1988),
275 - 310.
[BCP]
W. Bosma, J. Cannon, and C. Playoust,
The Magma algebra system. I. The user language,
J. Symbolic Comput.
24
(1997),
235 - 265.
[BCFS]
W. Bosma, J. J. Cannon, C. Fieker, and A. Steels (eds.),
Handbook of Magma functions,
Edition 2.18,
Sydney,
2012.
[BBH]
N. Boston, M. R. Bush and F. Hajir,
Heuristics for p-class towers of imaginary quadratic fields,
arXiv:1111.4679v1 [math.NT]
(2011).
[BaBu]
L. Bartholdi and M. R. Bush,
Maximal unramified 3-extensions of imaginary quadratic fields
and SL2Z3,
J. Number Theory
124
(2007),
159 - 166.
[ChFt]
S. M. Chang and R. Foote,
Capitulation in class field extensions of type (p,p),
Can. J. Math.
32
(1980),
no. 5,
1229 - 1243.
[DEF]
H. Dietrich, B. Eick, and D. Feichtenschlager,
Investigating p-groups by coclass with GAP,
Computational group theory and the theory of groups,
pp. 45 - 61,
Contemp. Math.
470,
AMS, Providence, RI,
2008.
[Dt1]
H. Dietrich,
Periodic patterns in the graph of p-groups of maximal class,
J. Group Theory
13
(2010),
851 - 871.
[Dt2]
H. Dietrich,
A new pattern in the graph of p-groups of maximal class,
Bull. London Math. Soc.
42
(2010),
1073 - 1088.
[dS]
M. du Sautoy,
Counting p-groups and nilpotent groups,
Inst. Hautes Études Sci. Publ. Math.
92
(2001),
63 - 112.
[Ef]
T. E. Easterfield,
A classification of groups of order p6,
Ph. D. Thesis,
Univ. of Cambridge,
1940.
[EkLg]
B. Eick and C. Leedham-Green,
On the classification of prime-power groups by coclass,
Bull. London Math. Soc.
40 (2)
(2008),
274 - 288.
[EkFs]
B. Eick and D. Feichtenschlager,
Infinite sequences of p-groups with fixed coclass
(preprint 2010).
[ELNO]
B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O'Brien,
On the classification of groups of prime-power order by coclass:
The 3-groups of coclass 2
(preprint 2011).
[Fi]
C. Fieker,
Computing class fields via the Artin map,
Math. Comp.
70
(2001),
no. 235,
1293 - 1303.
[Fu]
Ph. Furtwängler,
Beweis des Hauptidealsatzes
für die Klassenkörper algebraischer Zahlkörper,
Abh. Math. Sem. Univ. Hamburg
7
(1929),
14 - 36.
[GAP]
The GAP Group,
GAP - Groups, Algorithms, and Programming, Version 4.4.12,
Aachen, Braunschweig, Fort Collins, St. Andrews,
2008,
http://www.gap-system.org
[Ge]
F. Gerth III,
Ranks of 3-class groups
of non-Galois cubic fields,
Acta Arith.
30
(1976),
307 - 322.
[Gr]
G. Gras,
Sur les l-classes d'idéaux des extensions non galoisiennes de degré premier impair l
à la clôture galoisienne diédrale de degré 2l,
J. Math. Soc. Japan
26
(1974),
677 - 685.
[Hl]
Ph. Hall,
The classification of prime-power groups,
J. reine angew. Math.
182
(1940),
130 - 141.
[HeSm]
F.-P. Heider und B. Schmithals,
Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen,
J. reine angew. Math.
336
(1982),
1 - 25.
[Jm]
R. James,
The groups of order p6 (p an odd prime),
Math. Comp.
34
(1980),
no. 150,
613 - 637.
[KoVe]
H. Koch und B. B. Venkov,
Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers,
Astérisque,
24 - 25
(1975),
57 - 67.
[LgMk]
C. R. Leedham-Green and S. McKay,
The structure of groups of prime power order,
London Math. Soc. Monographs, New Series,
27,
Oxford Univ. Press,
2002.
[LgNm]
C. R. Leedham-Green and M. F. Newman,
Space groups and groups of prime power order I,
Arch. Math.
35
(1980),
193 - 203.
[Lm]
F. Lemmermeyer,
Class groups of dihedral extensions,
Math. Nachr.
278
(2005),
no. 6,
679 - 691.
[MAGMA]
The MAGMA Group,
MAGMA Computational Algebra System, Version 2.19-1,
Sydney,
2012,
http://magma.maths.usyd.edu.au
[Ma]
D. C. Mayer,
Multiplicities of dihedral discriminants,
Math. Comp.
58
(1992),
no. 198,
831-847,
supplements section S55-S58,
DOI 10.2307/2153221.
[Ma1]
D. C. Mayer,
Principalization in complex S3-fields,
Congressus Numerantium
80
(1991),
73 - 87,
Proceedings of the Twentieth Manitoba Conference
on Numerical Mathematics and Computing,
Winnipeg,
Manitoba,
1990.
[Ma2]
D. C. Mayer,
Transfers of metabelian p-groups,
Monatsh. Math.
166
(2012),
no. 3 - 4,
467 - 495,
DOI 10.1007/s00605-010-0277-x.
[Ma3]
D. C. Mayer,
The second p-class group of a number field,
Int. J. Number Theory
8
(2012),
no. 2,
471 - 505,
DOI 10.1142/S179304211250025X.
[Ma4]
D. C. Mayer,
Principalization algorithm via class group structure
(preprint 2011).
[Ma5]
D. C. Mayer,
The distribution of second p-class groups on coclass graphs,
J. Théor. Nombres Bordeaux
25
(2013),
no. 2,
401 - 456.
27th Journées Arithmétiques,
Faculty of Mathematics and Informatics,
Vilnius University,
Vilnius,
Lithuania,
2011.
[mL]
C. McLeman,
p-tower groups over quadratic imaginary number fields,
Ann. Sci. Math. Québec
32
(2008),
no. 2,
199 - 209.
[Mi]
R. J. Miech,
Metabelian p-groups of maximal class,
Trans. Amer. Math. Soc.
152
(1970),
331 - 373.
[My]
K. Miyake,
Algebraic investigations of Hilbert's Theorem 94,
the principal ideal theorem and the capitulation problem,
Expo. Math.
7
(1989),
289 - 346.
[Ne1]
B. Nebelung,
Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation,
Band 1,
Univ. zu Köln,
1989.
[Ne2]
B. Nebelung,
Anhang zu Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation,
Band 2,
Univ. zu Köln,
1989.
[Nm]
M. F. Newman,
Groups of prime-power order
Groups - Canberra 1989,
Lecture Notes in Mathematics,
vol. 1456,
1990,
pp. 49 - 62.
[PARI]
The PARI Group,
PARI/GP, Version 2.3.4
Bordeaux,
2008,
http://pari.math.u-bordeaux.fr
[Re]
H. Reichardt,
Arithmetische Theorie der kubischen Zahlkörper
als Radikalkörper,
Monatsh. Math. Phys.
40
(1933),
323 - 350.
[So1]
A. Scholz,
Über die Beziehung der Klassenzahlen
quadratischer Körper zueinander,
J. reine angew. Math.
166
(1932),
201 - 203.
[So2]
A. Scholz,
Idealklassen und Einheiten
in kubischen Körpern,
Monatsh. Math. Phys.
40
(1933),
211 - 222.
[SoTa]
A. Scholz und O. Taussky,
Die Hauptideale der kubischen Klassenkörper
imaginär quadratischer Zahlkörper:
ihre rechnerische Bestimmung und
ihr Einfluß auf den Klassenkörperturm,
J. reine angew. Math.
171
(1934),
19 - 41.
[Sr1]
O. Schreier,
Über die Erweiterung von Gruppen. I,
Monatsh. Math. Phys.
34
(1926),
165 - 180.
[Sr2]
O. Schreier,
Über die Erweiterung von Gruppen. II,
Hamburg. Sem. Abh.
4
(1926),
321 - 346.
[SnKw]
J.-J. Son and S.-H. Kwon,
On the principal ideal theorem,
J. Korean Math. Soc.
44
(2007),
no. 4,
747 - 756.
[Su]
H. Suzuki,
A generalization of Hilbert's Theorem 94,
Nagoya Math. J.
121
(1991),
161 - 169.
[Ta1]
O. Taussky,
A remark on the class field tower,
J. London Math. Soc.
12
(1937),
82 - 85.
[Ta2]
O. Taussky,
A remark concerning Hilbert's Theorem 94,
J. Reine Angew. Math.
239/240
(1970),
435 - 438.
[Yo]
E. Yoshida,
On the 3-class field tower of some biquadratic fields,
Acta Arith.
107
(2003),
no. 4,
327 - 336.
|
|