Bibliographical References:
[Ar1]
Emil Artin,
Beweis des allgemeinen Reziprozitätsgesetzes,
Abh. Math. Sem. Univ. Hamburg
5
(1927),
353 - 363.
[Ar2] Emil Artin,
Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz,
Abh. Math. Sem. Univ. Hamburg 7 (1929), 46 - 51.
[As]
Judith Ann Ascione,
On 3-groups of second maximal class,
Ph.D. Thesis, Australian National University, Canberra, 1979,
and Bull. Austral. Math. Soc.
21
(1980),
473 - 474.
[AHL]
J. A. Ascione, George Havas, and Charles R. Leedham-Green,
A computer aided classification
of certain groups of prime power order,
Bull. Austral. Math. Soc.
17
(1977),
257 - 274,
Corrigendum
317 - 319,
Microfiche Supplement
p. 320.
[Ay] Mohammed Ayadi,
Sur la capitulation des 3-classes d'idéaux d'un corps cubique cyclique,
Thèse de doctorat, Université Laval, Québec, 1995.
[Az] Abdelmalek Azizi,
Sur la capitulation des 2-classes d'idéaux de Q(d1/2,i),
Thèse de doctorat, Université Laval, Québec, 1993,
et C. R. Acad. Sci. Paris, Sér. I,
325
(1997),
127 - 130.
[AzMh] A. Azizi et Ali Mouhib,
Capitulation des 2-classes d'idéaux de Q(21/2,d1/2)
où d est un entier naturel sans facteurs carrés,
Acta Arith. 109 (2003), no. 1, 27 - 63.
[AzTb] A. Azizi et Mohammed Talbi,
Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques,
Acta Arith. 127 (2007), no. 3, 231 - 248.
[AzTs] A. Azizi et Mohammed Taous,
Capitulation des 2-classes d'idéaux de k=Q((2p)1/2,i),
Acta Arith. 131 (2008), no. 2, 103 - 123.
[AZT] A. Azizi, Abdelkader Zekhnini et M. Taous,
Capitulation dans le corps des genres de certain corps de nombres biquadratique imaginaire
dont le 2-groupe des classes est de type (2,2,2),
preprint, 2010.
[BaCo1] Pierre Barrucand and Harvey Cohn,
A rational genus, class number divisibility, and unit theory for pure cubic fields,
J. Number Theory 2 (1970), 7 - 21.
[BaCo2] Pierre Barrucand and Harvey Cohn,
Remarks on principal factors in a relative cubic field,
J. Number Theory 3 (1971), 226 - 239.
[BWB] Pierre Barrucand, Hugh C. Williams, and L. Baniuk,
A computational technique for determining the class number of a pure cubic field,
Math. Comp. 30 (1976), no. 134, 312 - 323.
[BjSn]
Elliot Benjamin and C. Snyder,
Real quadratic number fields with 2-class group of type (2,2),
Math. Scand.
76
(1995),
161 - 178.
[Bw]
W. E. H. Berwick,
On cubic fields with a given discriminant,
Proc. London Math. Soc., Ser. 2, 23 (1925), 359-378.
[Bl] Norman Blackburn,
On a special class of p-groups,
Acta Math. 100 (1958), 45 - 92.
[Br] James R. Brink,
The class field tower for imaginary quadratic number fields of type (3,3),
Dissertation, Ohio State Univ., 1984.
[BrGo] James R. Brink and Robert Gold,
Class field towers of imaginary quadratic fields,
manuscripta math. 57 (1987), 425 - 450.
[CtDh]
Raymond Couture et Aïssa Derhem,
Un problème de capitulation,
C. R. Acad. Sci. Paris, Série I,
314
(1992),
785 - 788.
[Dh]
Aïssa Derhem,
Capitulation dans les extensions quadratiques non ramifiées de corps de nombres cubiques cycliques,
Thèse de doctorat, Université Laval, Québec, 1988.
[DEF] H. Dietrich, B. Eick, and D. Feichtenschlager,
Investigating p-groups by coclass with GAP,
in Computational group theory and the theory of groups,
Contemp. Math. 470, 45 - 61,
AMS, Providence, RI,
2008.
[EkLg] B. Eick and C. Leedham-Green,
On the classification of prime-power groups by coclass,
Bull. London Math. Soc. 40 (2) (2008), 274 - 288.
[EkFs] B. Eick and D. Feichtenschlager,
Infinite sequences of p-groups with fixed coclass,
preprint, 2010.
[EnTu1] Veikko Ennola and Reino Turunen,
On totally real cubic fields,
Math. Comp. 44 (1985), 495 - 518.
[EnTu2] Veikko Ennola and Reino Turunen,
On cyclic cubic fields,
Math. Comp. 45 (1985), 585 - 589.
[Fu1]
Ph. Furtwängler,
Über das Verhalten der Ideale des Grundkörpers
im Klassenkörper,
Monatsh. Math. Phys.
27
(1916),
1 - 15.
[Fu2]
Ph. Furtwängler,
Beweis des Hauptidealsatzes
für die Klassenkörper algebraischer Zahlkörper,
Abh. Math. Sem. Univ. Hamburg
7
(1929),
14 - 36.
[Fu3]
Ph. Furtwängler,
Über eine Verschärfung des Hauptidealsatzes
für algebraische Zahlkörper,
J. Reine Angew. Math.
167
(1932),
379 - 387.
[Ge]
Frank Gerth III,
Ranks of 3-class groups
of non-Galois cubic fields,
Acta Arith.
30
(1976),
307 - 322.
[Gr] Marie-Nicole Gras,
Méthodes et algorithmes pour le calcul numérique
du nombre de classes et des unités
des extensions cubiques cycliques de Q,
J. reine angew. Math. 277 (1975), 89 - 116.
[Hl] Philip Hall,
The classification of prime-power groups,
J. reine angew. Math. 182 (1940), 130 - 141.
[Ha3]
Helmut Hasse,
Arithmetische Theorie der kubischen Zahlkörper
auf klassenkörpertheoretischer Grundlage,
Math. Z. 31 (1930), 565 - 582.
[HeSm] Franz-Peter Heider und Bodo Schmithals,
Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen,
J. reine angew. Math. 336 (1982), 1 - 25.
[Hi1]
David Hilbert,
Über den Dirichlet'schen biquadratischen Zahlkörper,
Math. Annalen 45 (1894), 309 - 340.
[Hi2]
David Hilbert,
Die Theorie der algebraischen Zahlkörper,
Jber. der D. M.-V. 4 (1897), 175 - 546.
[Ho] Taira Honda,
Pure cubic fields whose class numbers are multiples of three,
J. Number Theory 3 (1971), 7 - 12.
[Is] Moulay Chrif Ismaïli,
Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur,
Thèse de doctorat, Université Laval, Québec, 1992.
[IsMe1] Moulay Chrif Ismaïli and Rachid El Mesaoudi,
Sur la divisibilité exacte par 3 du nombre de classes de certain corps cubiques purs,
Ann. Sci. Math. Québec 25 (2001), no. 2, 153 - 177.
[IsMe] Moulay Chrif Ismaïli and Rachid El Mesaoudi,
Sur la capitulation des 3-classes d'idéaux de la clôture normale
de certaines corps cubiques purs,
Ann. Sci. Math. Québec 29 (2005), no. 1, 49 - 72.
[Ki1]
Hershy Kisilevsky,
Some results related to Hilbert's theorem 94,
J. number theory
2
(1970),
199 - 206.
[Ki2]
Hershy Kisilevsky,
Number fields with class number congruent to 4 mod 8
and Hilbert's theorem 94,
J. number theory
8
(1976),
271 - 279.
[Ku1]
Tomio Kubota,
Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers,
Nagoya Math. J.
6
(1953),
119 - 127.
[Ku2]
Tomio Kubota,
Über den bizyklischen biquadratischen Zahlkörper,
Nagoya Math. J.
10
(1956),
65 - 85.
[Kd]
S. Kuroda,
Über den Dirichletschen Körper,
J. Fac. Sci. Imp. Univ. Tokyo, Sec. I, Vol.
4
(1943), Part 5,
383 - 406.
[LhCh]
O. Lahlou et M. Charkani El Hassani,
Arithmétique d'une famille de corps cubiques,
C. R. Math. Acad. Sci. Paris
336
(2003),
no. 5,
371 - 376.
[LgMk]
C. R. Leedham-Green and S. McKay,
The structure of groups of prime power order,
London Math. Soc. Monographs, New Series, 27, Oxford Univ. Press, 2002.
[LgNm]
C. R. Leedham-Green and M. F. Newman,
Space groups and groups of prime power order I,
Arch. Math. 35 (1980), 193 - 203.
[Mt]
J. Martinet,
Sur l'arithmétique des extensions galoisiennes
à groupe de galois diédral d'ordre 2p,
Ann. Inst Fourier, Grenoble 19 (1963), 1 - 80.
[MtPn]
J. Martinet et J.-J. Payan,
Sur les extensions cubiques non-Galoisiennes
de rationels et leur clôture Galoisienne,
J. reine angew. Math. 228 (1965), 15 - 37.
[Ma]
Daniel C. Mayer,
Transfers of metabelian p-groups,
Monatsh. Math. (2010), DOI 10.1007/s00605-010-0277-x.
[Ma1]
Daniel C. Mayer,
The second p-class group of a number field,
Int. J. Number Theory (2010), DOI 10.1142/S179304211250025X.
[Ma2]
Daniel C. Mayer,
Principalization algorithm via class group structure,
preprint, 2011.
[Ma3] Daniel C. Mayer,
Lattice minima and units in real quadratic number fields,
Publicationes Mathematicae Debrecen
39 (1991), 19-86.
[Ma4]
Daniel C. Mayer,
Differential principal factors and units
in pure cubic number fields,
Dept. of Math., Univ. Graz, 1989.
[Ma5]
Daniel C. Mayer,
Multiplicities of dihedral discriminants,
Math. Comp. 58 (1992), no. 198, 831-847,
and supplements section S55-S58.
[Ma6] Daniel C. Mayer,
Principalization in complex S3-fields,
Congressus Numerantium 80 (1991), 73 - 87,
Proceedings of the Twentieth Manitoba Conference
on Numerical Mathematics and Computing,
Winnipeg, Manitoba,
1990.
[Ma7]
Daniel C. Mayer,
Discriminants of metacyclic fields,
Canad. Math. Bull. 36(1) (1993), 103-107.
[Ma8]
Daniel C. Mayer,
Classification of dihedral fields,
Dept. of Computer Science, Univ. of Manitoba, 1991.
[Ma9] Daniel C. Mayer,
List of discriminants dL<200000 of totally real cubic fields L,
arranged according to their multiplicities m and conductors f,
Dept. of Computer Science, Univ. of Manitoba, 1991.
[Ma10] Daniel C. Mayer,
Principal Factorization Types of Multiplets of Pure Cubic Fields Q( R1/3 ) with R < 106,
Univ. Graz, Computer Centre, 2002.
[Ma11] Daniel C. Mayer,
Class Numbers and Principal Factorizations of Families of Cyclic Cubic Fields with Discriminant d < 1010,
Univ. Graz, Computer Centre, 2002.
[Ma12] Daniel C. Mayer,
Principalization in Unramified Cyclic Cubic Extensions
of all Quadratic Fields with Discriminant -50000 < d < 0
and 3-Class Group of Type (3,3),
Univ. Graz, Computer Centre, 2003
[Ma13] Daniel C. Mayer,
Principalization in Unramified Cyclic Cubic Extensions
of selected Quadratic Fields with Discriminant -200000 < d < -50000
and 3-Class Group of Type (3,3),
Univ. Graz, Computer Centre, 2004
[Ma14] Daniel C. Mayer,
Two-Stage Towers of 3-Class Fields over Quadratic Fields,
Univ. Graz, 2006.
[Ma15] Daniel C. Mayer,
3-Capitulation over Quadratic Fields
with Discriminant |d| < 3*105 and 3-Class Group of Type (3,3),
Univ. Graz, Computer Centre, 2006.
[Ma16] Daniel C. Mayer,
Quadratic p-ring spaces for counting dihedral fields,
Dept. of Computer Science, Univ. of Manitoba,
2009.
[Mi]
R. J. Miech,
Metabelian p-groups of maximal class,
Trans. Amer. Math. Soc.
152
(1970),
331 - 373.
[Mo]
Nicole Moser,
Unités et nombre de classes
d'une extension Galoisienne diédrale de Q,
Abh. Math. Sem. Univ. Hamburg
48
(1979),
54 - 75.
[Ne1] Brigitte Nebelung,
Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation, Band 1, Univ. zu Köln, 1989.
[Ne2] Brigitte Nebelung,
Anhang zu Klassifikation metabelscher 3-Gruppen
mit Faktorkommutatorgruppe vom Typ (3,3)
und Anwendung auf das Kapitulationsproblem,
Inauguraldissertation, Band 2, Univ. zu Köln, 1989.
[NmOb] M. F. Newman and E. A. O'Brien,
Classifying 2-groups by coclass,
Trans. Amer. Math. Soc.
351
(1999),
131 - 169.
[Pa] Charles J. Parry,
Bicyclic Bicubic Fields,
Canad. J. Math. 42 (1990), no. 3, 491 - 507.
[Re]
Hans Reichardt,
Arithmetische Theorie der kubischen Zahlkörper
als Radikalkörper,
Monatsh. Math. Phys. 40 (1933), 323-350.
[Sm]
Bodo Schmithals,
Kapitulation der Idealklassen
und Einheitenstruktur in Zahlkörpern,
J. Reine Angew. Math.
358
(1985),
43 - 60.
[So1]
Arnold Scholz,
Über die Beziehung der Klassenzahlen
quadratischer Körper zueinander,
J. Reine Angew. Math. 166 (1932), 201-203
[So2] Arnold Scholz,
Idealklassen und Einheiten in kubischen Körpern,
Monatsh. Math. Phys. 40 (1933), 211 - 222.
[SoTa] Arnold Scholz und Olga Taussky,
Die Hauptideale der kubischen Klassenkörper
imaginär quadratischer Zahlkörper:
ihre rechnerische Bestimmung und
ihr Einfluß auf den Klassenkörperturm,
J. reine angew. Math.171 (1934), 19 - 41.
[Sr1]
Otto Schreier,
Über die Erweiterung von Gruppen. I,
Monatsh. Math. Phys.
34
(1926),
165 - 180.
[Sr2]
Otto Schreier,
Über die Erweiterung von Gruppen. II,
Hamburg. Sem. Abh.
4
(1926),
321 - 346.
[Tl]
Mohamed Talbi,
Capitulation des 3-classes d'idéaux dans certains corps de nombres,
Thèse de doctorat, Université Mohammed Premier, Oujda, Morocco,
2008.
[Ta1]
Olga Taussky,
Über eine Verschärfung des Hauptidealsatzes
für algebraische Zahlkörper,
J. Reine Angew. Math.
168
(1932),
193 - 210.
[Ta2]
Olga Taussky,
A remark on the class field tower,
J. London Math. Soc.
12
(1937),
82 - 85.
[Vo1] Georgij F. Voronoi,
O celykh algebraicheskikh chislakh zavisyashchikh ot kornya
uravneniya tretei stepeni
(On the algebraic integers derived from a root
of a third degree equation),
Master's thesis, 1894, St. Peterburg (Russian).
[Vo2]
Georgij F. Voronoi,
Ob odnom obobshchenii algorifma nepreryvnykh drobei
(On a generalization of the algorithm of continued fractions),
Doctoral Dissertation,
1896, Warsaw (Russian).
[Wa1] Hideo Wada,
On cubic Galois extensions of Q( (-3)1/2 ),
Proc. Japan Acad. 46 (1970), 397 - 400.
[Wa2] Hideo Wada,
A table of ideal class groups of imaginary quadratic fields,
Proc. Japan Acad. 46 (1970), 401 - 403.
[Wa3] Hideo Wada,
A table of fundamental units of purely cubic fields,
Proc. Japan Acad. 46 (1970), 1135 - 1140.
[Wi3]
Hugh C. Williams,
Determination of principal factors
in Q(D1/2) and Q(D1/3),
Math. Comp. 38 (1982), no. 157, 261 - 274.
|
|