1. Definition of the Principalization Type.
Assume that p ≥ 2 denotes an arbitrary rational prime.
Let K be a base field with p-class rank 2 and
with p-class group Sylp(C(K)) of p-elementary abelian type (p,p).
Denote by K1 the 1st Hilbert p-class field of K.
According to the Artin Reciprocity Law of Class Field Theory,
the p-class group Sylp(C(K)) ≅ (p,p) of K is isomorphic to the
relative automorphism group Gal(K1|K) of K1 over K.
In particular, the p+1 cyclic subgroups Ci (1 ≤ i ≤ p+1) of Sylp(C(K)) are mapped to the
Galois groups Gal(K1|Ni) = Mi of p+1 unramified cyclic extensions Ni of K of p-th degree.
In fact, the Ci = Norm(Ni|K)Sylp(C(Ni)) are relative norms of p-class groups.
The following diagrams illustrate the Galois correspondence and the Artin isomorphism:
| | | | K1 = N0 | | | | |
| / | | / | | \ | | \ | |
N1 | | N2 | | | | ... | | Np+1 |
| \ | | \ | | / | | / | |
| | | | K | | | | |
|
| | | | Gal(K1|K1) = 1 | | | | |
| / | | | | | | | \ | |
M1 | | | | Gal(K1|Ni) = Mi | | | | Mp+1 |
| \ | | | | | | | / | |
| | | | Gal(K1|K) | | | | |
|
| | | | 1 | | | | |
| / | | / | | \ | | \ | |
C1 | | C2 | | | | ... | | Cp+1 |
| \ | | \ | | / | | / | |
| | | | Sylp(C(K)) = C0 | | | | |
|
Now we consider the class extension homomorphisms j(Ni|K): Sylp(C(K)) → Sylp(C(Ni)).
We say an ideal class of K that is mapped to the principal class 1 of Ni by j(Ni|K)
principalizes or becomes principal or capitulates in Ni.
According to Hilbert's Theorem 94, none of the principalization kernels Kern j(Ni|K) is trivial,
provided that Ni|K is an extension with odd prime degree p ≥ 3,
since there is an isomorphism to the unit cohomology of N = Ni:
Kern j(N|K) = PN<S>/PK ≅ EN|K/UNS-1 > 1,
where Gal(N|K) = <S> and EN|K denotes the intersection of UN with Kern Norm(N|K).
According to the Hilbert/Artin/Furtwängler Principal Ideal Theorem,
we have complete principalization in the Hilbert p-class field K1 = N0:
Kern j(N0|K) = Sylp(C(K)) = C0.
Thus, there are p+2 possibilities for each Kern j(Ni|K), C0,C1,…,Cp+1.
If p ≥ 3 is an odd rational prime
and K is a quadratic field,
then we define a Natural Principalization Type (k(1),…,k(p+1)),
ordering the Ni (1 ≤ i ≤ p+1), which have dihedral absolute groups Gal(Ni|Q) = D(2p),
by increasing regulators of their absolute subfields Li of p-th degree:
for each index 0 ≤ i ≤ p+1 there exists a unique index 0 ≤ k(i) ≤ p+1
such that Kern j(Ni|K) = Ck(i) (in particular, we always have k(0) = 0).
|
2. All known Examples for Principalization Types.
Only very few results [2, Beispiel 5, p. 22, f.] are known
about the p-principalization for odd primes p ≥ 5.
Consequently we restrict ourselves to the case p = 3 and we give all results about
the 3-principalization in unramified cyclic cubic extensions of quadratic base fields
with 3-class rank 2 and 3-class group of type (3,3).
In the following tables,
we give the natural principalization type (k(1)…k(4))
of complex quadratic fields K = Q(d1/2)
with discriminant -700000 < d < 0
and 3-class group of type (3,3).
The range -50000 < d < 0 is covered completely.
Our computations of 2003
for 42 new cases in the range -50000 < d < -30000
[7]
extend our own results for 22 fields with -30000 < d < -20000 of 1989
[5]
and the 13 examples with -20000 < d < 0 by Heider and Schmithals in 1982
[2]
.
The results by Brink in his 1984 thesis
[3]
came to our knowledge with delay in 2006,
since they are not mentioned explicitly in the paper
[4]
by Brink and Gold.
As a supplement,
we give some particularly interesting singular cases
with associated 2-stage metabelian 3-groups
[9]
of exceptionally high order
in the range -700000 < d < -50000
[8,10,11]
.
Rare or exceptional cases are printed in boldface digits.
No. | dK | (k(1)…k(4)) | Type | Ref. |
1 | -3896 | (4111) | H.4 | [2] |
2 | -4027 | (2331) | D.10 | [1] |
3 | -6583 | (4111) | H.4 | [2] |
4 | -8751 | (1421) | D.10 | [2] |
5 | -9748 | (2214) | E.9 | [1] |
--- | ------- | ------ | ------ | ----- |
6 | -12067 | (4321) | G.19 | [2] |
7 | -12131 | (2244) | D.5 | [2] |
8 | -15544 | (1122) | E.6 | [2] |
9 | -16627 | (2313) | E.14 | [2] |
10 | -17131 | (3214) | G.16 | [2] |
11 | -18555 | (1313) | E.6 | [2] |
12 | -19187 | (4334) | D.5 | [2] |
13 | -19651 | (1312) | D.10 | [2] |
--- | ------- | ------ | ------ | ----- |
14 | -20276 | (3232) | D.5 | [3,5] |
15 | -20568 | (1414) | D.5 | [3,5] |
16 | -21224 | (1421) | D.10 | [3,5] |
17 | -21668 | (2111) | H.4.V1 | [3,5] |
18 | -22395 | (1132) | E.9 | [3,5] |
19 | -22443 | (2214) | E.9 | [3,5] |
20 | -22711 | (2331) | D.10 | [3,5] |
21 | -23428 | (3323) | H.4 | [3,5] |
22 | -23683 | (3223) | E.6 | [3,5] |
23 | -24340 | (1133) | D.5 | [3,5] |
24 | -24884 | (2134) | G.16 | [3,5] |
25 | -24904 | (2241) | D.10 | [3,5] |
26 | -25447 | (3343) | H.4 | [5] |
27 | -26139 | (3221) | D.10 | [5] |
28 | -26760 | (1133) | D.5 | [3,5] |
29 | -27156 | (4221) | F.11 | [3,5] |
30 | -27355 | (4441) | H.4 | [5] |
31 | -27640 | (1332) | E.9 | [3,5] |
32 | -27991 | (2122) | H.4 | [5] |
33 | -28031 | (4332) | D.10 | [5] |
34 | -28279 | (1432) | G.16 | [5] |
35 | -28759 | (2414) | D.10 | [5] |
--- | ------- | ------ | ------ | ----- |
36 | -31271 | (4112) | E.14 | [7] |
37 | -31639 | (1331) | D.5 | [7] |
38 | -31908 | (3211) | F.12 | [3,7] |
39 | -31999 | (1133) | D.5 | [7] |
40 | -32968 | (3232) | D.5 | [3,7] |
41 | -34027 | (3313) | H.4.V1 | [7] |
42 | -34088 | (4212) | D.10 | [3,7] |
43 | -34507 | (4334) | D.5 | [7] |
44 | -34867 | (1134) | E.8 | [7] |
45 | -35367 | (4224) | D.5 | [7] |
46 | -35539 | (4231) | G.16 | [7] |
47 | -36276 | (4442) | H.4 | [3,7] |
48 | -36807 | (4212) | D.10 | [7] |
49 | -37219 | (3343) | H.4 | [7] |
50 | -37540 | (4442) | H.4 | [3,7] |
51 | -37988 | (3231) | E.9 | [3,7] |
52 | -39736 | (4134) | E.9 | [3,7] |
53 | -39819 | (3343) | H.4 | [7] |
--- | ------- | ------ | ------ | ----- |
54 | -40299 | (2241) | D.10 | [7] |
55 | -40692 | (2414) | D.10 | [3,7] |
56 | -41015 | (1312) | D.10 | [7] |
57 | -41063 | (2422) | H.4 | [7] |
58 | -41583 | (1221) | D.5 | [7] |
59 | -41671 | (1331) | D.5 | [7] |
60 | -42423 | (4332) | D.10 | [7] |
61 | -42619 | (3234) | E.8 | [7] |
62 | -42859 | (4313) | E.14 | [7] |
63 | -43192 | (2213) | D.10 | [3,7] |
64 | -43307 | (2244) | D.5 | [7] |
65 | -43827 | (3313) | H.4 | [7] |
66 | -43847 | (2311) | E.14 | [7] |
67 | -44004 | (3431) | D.10 | [3,7] |
68 | -45835 | (2414) | D.10 | [7] |
69 | -45887 | (3244) | E.9 | [7] |
70 | -46551 | (2122) | H.4 | [7] |
71 | -46587 | (4223) | D.10 | [7] |
72 | -48052 | (1312) | D.10 | [3,7] |
73 | -48472 | (4134) | E.9 | [3,7] |
74 | -48667 | (2231) | E.9 | [7] |
75 | -49128 | (4133) | D.10 | [3,7] |
76 | -49812 | (3242) | D.10 | [3,7] |
77 | -49924 | (3412) | G.19 | [3,7] |
--- | ------- | ------ | ------ | ----- |
78 | -50739 | (3144) | D.10 | [11] |
79 | -50855 | (2414) | D.10 | [11] |
80 | -50983 | (4134) | E.9 | [11] |
81 | -51348 | (2313) | E.14 | [3,11] |
82 | -51995 | (1413) | D.10 | [11] |
83 | -53839 | (2111) | H.4 | [11] |
84 | -53843 | (4142) | E.14 | [11] |
85 | -54071 | (4111) | H.4 | [11] |
86 | -54195 | (3412) | G.19 | [11] |
87 | -54251 | (4441) | H.4 | [11] |
88 | -54319 | (4234) | E.8 | [11] |
89 | -55247 | (2241) | D.10 | [11] |
90 | -55271 | | D.10 | |
91 | -55623 | | D.10 | |
92 | -57079 | | D.5 | |
93 | -58920 | (4134) | E.9 | [3] |
--- | ------- | ------ | ------ | ----- |
94 | -60099 | | G.19 | |
95 | -60196 | (4214) | E.9 | [3] |
96 | -60895 | (3344) | E.6 | |
97 | -63079 | (2111) | H.4 | [11] |
98 | -63103 | (2434) | E.9 | |
99 | -63303 | (3122) | E.14 | |
|
No. | dK | (k(1)…k(4)) | Type | Ref. |
100 | -64196 | (3434) | D.5 | [3] |
101 | -64952 | (4111) | H.4.V1 | [3] |
102 | -65051 | (4214) | E.9 | |
103 | -65203 | | H.4.V1 | |
104 | -65204 | (4114) | E.6 | [3] |
105 | -65407 | (3423) | E.14 | |
106 | -67480 | (2343) | F.13 | [3,8] |
107 | -68584 | (4122) | E.14 | [3] |
--- | ------- | ------ | ------ | ----- |
108 | -70244 | (4212) | D.10 | [3] |
109 | -72435 | | D.10 | |
110 | -72591 | | H.4.V1 | |
111 | -73007 | | H.4 | |
112 | -73448 | (1231) | E.8 | [3] |
113 | -73731 | | D.5 | |
114 | -75847 | | H.4 | |
115 | -77144 | (3221) | D.10 | [3] |
116 | -78180 | (2411) | E.14 | [3] |
117 | -78708 | (1421) | D.10 | [3] |
118 | -79163 | (2421) | E.14 | |
--- | ------- | ------ | ------ | ----- |
119 | -80516 | (2231) | E.9 | [3] |
120 | -81867 | | D.10 | |
121 | -83395 | | G.19 | |
122 | -84072 | (3111) | H.4 | [3] |
123 | -85199 | | D.10 | |
124 | -85796 | (1414) | D.5 | [3] |
125 | -86551 | | G.19 | |
126 | -87503 | | D.10 | |
127 | -87720 | (1221) | D.5 | [3] |
128 | -87727 | | D.10 | |
129 | -88447 | | D.10 | |
130 | -89924 | (3341) | E.14 | [3] |
--- | ------- | ------ | ------ | ----- |
131 | -90163 | (4413) | E.14 | |
132 | -91471 | | D.10 | |
133 | -91643 | | G.19 | |
134 | -91860 | (2433) | D.10 | [3] |
135 | -92660 | (1324) | G.16 | [3] |
136 | -92712 | (1421) | D.10 | [3] |
137 | -92827 | | G.16 | |
138 | -93067 | | G.19 | |
139 | -93207 | (3423) | E.14 | |
140 | -93823 | | D.5 | |
141 | -94420 | (1142) | D.10 | [3] |
142 | -95155 | | D.10 | |
143 | -95448 | (3441) | E.14 | [3] |
144 | -95691 | | D.5 | |
145 | -96436 | | H.4 | |
146 | -96551 | | G.19 | |
147 | -96827 | (2143) | G.19.V1 | [8] |
148 | -97063 | | H.4 | |
149 | -97555 | | D.10 | |
150 | -97583 | | H.4 | |
151 | -97687 | (1431) | E.9 | |
152 | -97799 | | H.4 | |
153 | -98347 | | H.4 | |
154 | -98795 | | D.10 | |
155 | -99707 | | D.10 | |
156 | -99939 | (4133) | D.10 | [11] |
--- | ------- | ------ | ------ | ----- |
166 | -104627 | (3442) | F.13 | [8] |
210 | -124363 | (4411) | F.7 | [8] |
220 | -128451 | (1214) | E.8 | [11] |
235 | -135059 | (1243) | G.16.V1 | [8] |
236 | -135587 | (1422) | F.12 | [8] |
261 | -156452 | (4321) | G.19.V1 | [8] |
268 | -159208 | (2343) | F.13.V1 | [8] |
271 | -160403 | (3314) | F.12 | [8] |
288 | -167064 | (2343) | F.13 | [8] |
314 | -184132 | (4211) | F.12 | [8] |
317 | -185747 | (1243) | G.16.V1 | [8] |
320 | -186483 | (3343) | H.4.V2 | [8] |
324 | -187503 | (2231) | E.9 | [11] |
330 | -189959 | (1323) | F.12 | [8] |
349 | -199735 | (2143) | G.19.V2 | [10] |
--- | ------- | ------ | ------ | ----- |
383 | -216987 | (4134) | E.9 | [11] |
399 | -224580 | (2443) | F.13 | [10] |
401 | -225299 | (3443) | F.7 | [10] |
430 | -241160 | (1143) | F.11 | [10] |
439 | -245463 | (1324) | G.16.V1 | [10] |
446 | -249371 | (4243) | F.12.V1 | [10] |
453 | -256935 | (4443) | H.4.V3 | [10] |
459 | -260515 | (3443) | F.7 | [10] |
462 | -262628 | (2343) | F.13.V1 | [10] |
463 | -262744 | (2441) | E.14.V1 | [10] |
465 | -263908 | (2313) | E.14.V1 | [10] |
471 | -268040 | (1441) | E.6.V1 | [10] |
480 | -273284 | (2412) | F.13.V1 | [10] |
490 | -278427 | (1443) | F.12.V1 | [10] |
500 | -283908 | (1413) | D.10 | [11] |
504 | -287155 | (3143) | F.13 | [10] |
514 | -290703 | (1324) | G.16.V2 | [10] |
515 | -291220 | (1443) | F.12 | [10] |
526 | -296407 | (2443) | F.13 | [10] |
528 | -297079 | (1431) | E.9.V1 | [10] |
--- | ------- | ------ | ------ | ----- |
617 | -344667 | (2443) | F.13 | [11] |
856 | -453423 | (4214) | E.9 | [11] |
875 | -461847 | (2344) | D.10 | [11] |
978 | -516756 | (1341) | D.10 | [11] |
1189 | -620328 | (2111) | H.4.V4 | [11] |
1215 | -629295 | (1414) | D.5 | [11] |
1255 | -642084 | (4122) | E.14.V1 | [11] |
|
In the following tables,
we give the natural principalization type (k(1)…k(4))
of real quadratic fields K = Q(d1/2)
with discriminant 0 < d < 106
and 3-class group of type (3,3).
The entire range 0 < d < 106 is covered completely now.
Our computations of 2009
for 119 new cases in the range 300000 < d < 1000000
[11]
and of 2006
for the 14 discriminants in the range 200000 < d < 300000
[10]
extend our own results for 11 fields with 100000 < d < 200000 of 1991
[6]
and the 5 examples with 0 < d < 100000 of Heider and Schmithals in 1982
[2]
.
Rare or exceptional cases are printed in boldface digits.
For the meaning of an asterisk (*) see the
explanations for d = 142097.
No. | dK | (k(1)…k(4)) | Type | Ref. |
1 | 32009 | (0003) | a.3 | [2] |
2 | 42817 | (0003) | a.3 | [2] |
3 | 62501 | (0000) | a.1 | [2] |
4 | 72329 | (0200) | a.2 | [2] |
5 | 94636 | (0030) | a.2 | [2] |
--- | ------- | ------ | ------ | ----- |
6 | 103809 | (0003) | a.3 | [6] |
7 | 114889 | (0020) | a.3 | [6] |
8 | 130397 | (0003) | a.3 | [6] |
9 | 142097 | (4000) | a.3* | [6] |
10 | 151141 | (0300) | a.3 | [6] |
11 | 152949 | (0000) | a.1 | [6] |
12 | 153949 | (1000) | a.2 | [6] |
13 | 172252 | (0100) | a.3 | [6] |
14 | 173944 | (0400) | a.3* | [6] |
15 | 184137 | (0300) | a.3 | [6] |
16 | 189237 | (1000) | a.2 | [6] |
--- | ------- | ------ | ------ | ----- |
17 | 206776 | (0200) | a.2 | [10] |
18 | 209765 | (0200) | a.2 | [10] |
19 | 213913 | (0400) | a.3 | [10] |
20 | 214028 | (0030) | a.2 | [10] |
21 | 214712 | (4321) | G.19 | [10] |
22 | 219461 | (0030) | a.2 | [10] |
23 | 220217 | (0003) | a.3 | [10] |
24 | 250748 | (3000) | a.3 | [10] |
25 | 252977 | (0000) | a.1 | [10] |
26 | 259653 | (0100) | a.3* | [10] |
27 | 265245 | (0040) | a.3 | [10] |
28 | 275881 | (0030) | a.2 | [10] |
29 | 283673 | (0010) | a.3* | [10] |
30 | 298849 | (0001) | a.3 | [10] |
--- | ------- | ------ | ------ | ----- |
31 | 320785 | (0100) | a.3* | [11] |
32 | 321053 | (0400) | a.3* | [11] |
33 | 326945 | (0100) | a.3* | [11] |
34 | 333656 | (0003) | a.3 | [11] |
35 | 335229 | (3000) | a.3* | [11] |
36 | 341724 | (0002) | a.3 | [11] |
37 | 342664 | (4134) | E.9 | [11] |
38 | 358285 | (0000) | a.1 | [11] |
39 | 363397 | (0020) | a.3 | [11] |
40 | 371965 | (0003) | a.3 | [11] |
41 | 390876 | (1000) | a.2 | [11] |
--- | ------- | ------ | ------ | ----- |
42 | 400369 | (0004) | a.2 | [11] |
43 | 412277 | (0003) | a.3* | [11] |
44 | 415432 | (0020) | a.3 | [11] |
45 | 422573 | (1341) | D.10 | [11] |
46 | 424236 | (0010) | a.3* | [11] |
47 | 431761 | (0030) | a.2 | [11] |
48 | 449797 | (0010) | a.3 | [11] |
49 | 459964 | (0010) | a.3* | [11] |
50 | 460817 | (1000) | a.2 | [11] |
51 | 468472 | (3000) | a.3 | [11] |
52 | 471057 | (3000) | a.3 | [11] |
53 | 471713 | (0020) | a.3* | [11] |
54 | 476124 | (0400) | a.3 | [11] |
55 | 476152 | (0040) | a.3* | [11] |
56 | 486221 | (0003) | a.3 | [11] |
57 | 486581 | (1000) | a.2 | [11] |
58 | 494236 | (3000) | a.3.V1 | [11] |
--- | ------- | ------ | ------ | ----- |
59 | 502796 | (4332) | D.10 | [11] |
60 | 510337 | (0300) | a.3 | [11] |
61 | 527068 | (0020) | a.3* | [11] |
62 | 531437 | (0000) | a.1 | [11] |
63 | 531445 | (0003) | a.3 | [11] |
64 | 534824 | (0313) | c.18 | [11] |
65 | 535441 | (2000) | a.3* | [11] |
66 | 540365 | (0231) | c.21 | [11] |
67 | 548549 | (0004) | a.2 | [11] |
68 | 549133 | (0002) | a.3 | [11] |
69 | 551384 | (4000) | a.3* | [11] |
70 | 551692 | (0004) | a.2 | [11] |
71 | 552392 | (0200) | a.2 | [11] |
72 | 557657 | (0020) | a.3 | [11] |
73 | 567473 | (3000) | a.3* | [11] |
74 | 575729 | (3221) | D.10 | [11] |
|
No. | dK | (k(1)…k(4)) | Type | Ref. |
75 | 578581 | (0400) | a.3 | [11] |
76 | 586760 | (0000) | a.1 | [11] |
77 | 593941 | (0040) | a.3 | [11] |
78 | 595009 | (0000) | a.1 | [11] |
79 | 597068 | (3000) | a.3 | [11] |
--- | ------- | ------ | ------ | ----- |
80 | 600085 | (3000) | a.3 | [11] |
81 | 602521 | (0004) | a.2 | [11] |
82 | 621429 | (4000) | a.3 | [11] |
83 | 621749 | (0020) | a.3* | [11] |
84 | 626411 | (4223) | D.10 | [11] |
85 | 631769 | (3434) | D.5 | [11] |
86 | 636632 | (0001) | a.3 | [11] |
87 | 637820 | (0400) | a.3* | [11] |
88 | 654796 | (0400) | a.3 | [11] |
89 | 665832 | (0040) | a.3 | [11] |
90 | 681276 | (0020) | a.3* | [11] |
91 | 686977 | (0010) | a.3* | [11] |
92 | 689896 | (0300) | a.3 | [11] |
93 | 698556 | (1000) | a.2 | [11] |
--- | ------- | ------ | ------ | ----- |
94 | 710652 | (0043) | b.10 | [11] |
95 | 718705 | (0003) | a.3 | [11] |
96 | 719105 | (0100) | a.3 | [11] |
97 | 722893 | (0002) | a.3 | [11] |
98 | 726933 | (0000) | a.1 | [11] |
99 | 729293 | (0020) | a.3* | [11] |
100 | 747496 | (0020) | a.3* | [11] |
101 | 750376 | (2000) | a.3* | [11] |
102 | 751657 | (0003) | a.3 | [11] |
103 | 775480 | (0004) | a.2 | [11] |
104 | 775661 | (0030) | a.2 | [11] |
105 | 781177 | (0200) | a.2 | [11] |
106 | 782737 | (0100) | a.3* | [11] |
107 | 782876 | (1000) | a.2 | [11] |
108 | 784997 | (0001) | a.3* | [11] |
109 | 785269 | (3000) | a.3 | [11] |
110 | 790085 | (1000) | a.2.V1 | [11] |
--- | ------- | ------ | ------ | ----- |
111 | 801368 | (0000) | a.1 | [11] |
112 | 804648 | (0004) | a.2 | [11] |
113 | 807937 | (0010) | a.3* | [11] |
114 | 810661 | (4223) | D.10 | [11] |
115 | 814021 | (0040) | a.3 | [11] |
116 | 823512 | (0040) | a.3 | [11] |
117 | 829813 | (2000) | a.3 | [11] |
118 | 831484 | (1000) | a.2 | [11] |
119 | 835853 | (1144) | D.5 | [11] |
120 | 836493 | (0030) | a.2 | [11] |
121 | 859064 | (4224) | D.5 | [11] |
122 | 873969 | (0040) | a.3 | [11] |
123 | 874684 | (2000) | a.3 | [11] |
124 | 881689 | (0300) | a.3 | [11] |
125 | 893029 | (0100) | a.3* | [11] |
126 | 893689 | (1000) | a.2 | [11] |
--- | ------- | ------ | ------ | ----- |
127 | 902333 | (0001) | a.3 | [11] |
128 | 907629 | (0030) | a.2 | [11] |
129 | 907709 | (0030) | a.2 | [11] |
130 | 908241 | (0003) | a.3 | [11] |
131 | 916181 | (0400) | a.3* | [11] |
132 | 935665 | (0010) | a.3 | [11] |
133 | 939569 | (0400) | a.3 | [11] |
134 | 940593 | (0000) | a.1 | [11] |
135 | 942961 | (3000) | a.3* | [11] |
136 | 943077 | (4321) | G.19 | [11] |
137 | 944760 | (0040) | a.3 | [11] |
138 | 945813 | (0231) | c.21 | [11] |
139 | 957013 | (2122) | H.4 | [11] |
140 | 957484 | (0200) | a.2 | [11] |
141 | 959629 | (0004) | a.2 | [11] |
142 | 966053 | (4000) | a.3* | [11] |
143 | 966489 | (0000) | a.1 | [11] |
144 | 967928 | (0020) | a.3* | [11] |
145 | 974157 | (0001) | a.3* | [11] |
146 | 980108 | (0004) | a.2 | [11] |
147 | 982049 | (0010) | a.3* | [11] |
148 | 993349 | (0004) | a.2 | [11] |
149 | 994008 | (1000) | a.2 | [11] |
|
|
The principalization type (k(1)…k(4))
with respect to the four unramified cyclic cubic extensions N1,…,N4
of a quadratic number field K
with 3-class group Syl3(C(K)) of type (3,3)
together with the family of 3-class numbers (h1,…,h4)
of the absolute cubic subfields L1,…,L4
of the normal S3-fields N1,…,N4 between K1 and K
uniquely determines the class m-1 and order 3n of
the 2-stage metabelian 3-group
G = Gal(K2 | K)
of the 2nd Hilbert 3-class field K2
over the quadratic field K.
In the following table, the principalization types (k(1)…k(4)) are arranged into sections,
according to
[1,9]
,
and they are numbered similarly as in
[5,9]
.
We always give a canonical representative (CR) of the type's equivalence class (S4-orbit),
the number of fixed points (FP),
the occupation numbers (ON)
(telling how often each of the digits 0,1,2,3,4 appears in the representative),
the cardinality (#) of the type's orbit under the operation of S4,
the year of the concrete numerical realization of the type with a reference,
the smallest absolute discriminant |dK| of a quadratic field K with that type,
an ideal of polynomials in Z[X,Y], called the associated symbolic order (SO) in
[1,3,9]
,
the structure of the commutator subgroup G' = G2,
the exponents in defining relations for the group's generators (RE),
and the set CBF(m,n), defined in
[9]
,
to which the group G belongs.
Remarks: 1. Section "A" is impossible for quadratic base fields K.
(However, it can occur for cyclic cubic base fields K [0].)
2. Sections "B", "C", and "e" cannot occur at all, for group theoretic reasons.
3. Sections "a", "b", "c", and "d" can occur only for real quadratic base fields K.
Sec. | No. | CR | FP | ON | # | Year | dK | SO | h1,…,h4 | G2 | RE | G in | |
A | 1 | 1111 | 1 | 04000 | 4 | 1931 [0] | - | L | - | (3) | 1,0;0 | CF 1a(3) | |
D | | | | | | | | | | | | |
| 5 | 1212 | 2 | 02200 | 12 | 1981 [2] | -12131 | L2 | 3,3,3,3 | (3,3,3) | 1,1,-1,1;0 | CBF 1a(4,5) | |
| | | | | | 2009 [11] | 631769 | L2 | 3,3,3,3 | (3,3,3) | 1,1,-1,1;0 | CBF 1a(4,5) | |
| 10 | 1123 | 1 | 02110 | 24 | | | | | | | | |
| | | | | | 1933 [1] | -4027 | L2 | 3,3,3,3 | (3,3,3) | 0,0,-1,1;0 | CBF 1a(4,5) | |
| | | | | | 2006 [11] | 422573 | L2 | 3,3,3,3 | (3,3,3) | 0,0,-1,1;0 | CBF 1a(4,5) | |
E | | | | | | | | | | | | |
| 6 | 1122 | 1 | 02200 | 12 | | | | | | | | |
| | | | | | 1981 [2] | -15544 | X4 | 9,3,3,3 | (9,9,3) | 1,-1,1,1;0 | CBF 2a(6,7) | |
| | | | | | 2005 [10] | -268040 | X6 | 27,3,3,3 | (27,27,3) | 1,-1,1,1;0 | CBF 2a(8,9) | |
| | | | | | 2010 | 5264069 | X4 | 9,3,3,3 | (9,9,3) | 1,-1,1,1;0 | CBF 2a(6,7) | |
| 8 | 1231 | 3 | 02110 | 12 | | | | | | | | |
| | | | | | 2003 [7] | -34867 | X4 | 9,3,3,3 | (9,9,3) | 1,0,-1,1;0 | CBF 2a(6,7) | |
| | | | | | 2010 | -370740 | X6 | 27,3,3,3 | (27,27,3) | 1,0,-1,1;0 | CBF 2a(8,9) | |
| | | | | | 2010 | 6098360 | X4 | 9,3,3,3 | (9,9,3) | 1,0,-1,1;0 | CBF 2a(6,7) | |
| 9 | 1213 | 2 | 02110 | 24 | | | | | | | | |
| | | | | | 1933 [1] | -9748 | X4 | 9,3,3,3 | (9,9,3) | 0,0,+-1,1;0 | CBF 2a(6,7) | |
| | | | | | 2005 [10] | -297079 | X6 | 27,3,3,3 | (27,27,3) | 0,0,+-1,1;0 | CBF 2a(8,9) | |
| | | | | | 2006 [11] | 342664 | X4 | 9,3,3,3 | (9,9,3) | 0,0,+-1,1;0 | CBF 2a(6,7) | |
| 14 | 2311 | 0 | 02110 | 24 | | | | | | | | |
| | | | | | 1981 [2] | -16627 | X4 | 9,3,3,3 | (9,9,3) | 0,-1,+-1,1;0 | CBF 2a(6,7) | |
| | | | | | 2005 [10] | -262744 | X6 | 27,3,3,3 | (27,27,3) | 0,-1,+-1,1;0 | CBF 2a(8,9) | |
| | | | | | 2010 | 3918837 | X4 | 9,3,3,3 | (9,9,3) | 0,-1,+-1,1;0 | CBF 2a(6,7) | |
F | | | | | | | | | | | | |
| 7 | 2112 | 0 | 02200 | 12 | | | | | | | | |
| | | | | | 2003 [8] | -124363 | R4,4 | 9,9,3,3 | (9,9,9,3) | +-1,1,+-1,1;0 | CBF 1a(6,9) | |
| | | | | | 2010 | -469816 | R6,4 | 27,9,3,3 | (27,27,9,3) | +-1,1,+-1,1;0 | CBF 2a(8,11) | |
| 11 | 1321 | 1 | 02110 | 12 | | | | | | | | |
| | | | | | 1984 [3] | -27156 | R4,4 | 9,9,3,3 | (9,9,9,3) | 1,+-1,0,0;0 | CBF 1a(6,9) | |
| | | | | | 2010 | -469787 | R6,4 | 27,9,3,3 | (27,27,9,3) | 1,+-1,0,0;0 | CBF 2a(8,11) | |
| 12 | 3211 | 1 | 02110 | 24 | | | | | | | | |
| | | | | | 1984 [3] | -31908 | R4,4 | 9,9,3,3 | (9,9,9,3) | +-1,+-1,0,+-1;0 | CBF 1a(6,9) | |
| | | | | | 2005 [10] | -249371 | R6,4 | 27,9,3,3 | (27,27,9,3) | +-1,?,?,+-1;0 | CBF 2a(8,11) | |
| | | | | | 2010 | -423640 | R6,6 | 27,27,3,3 | (27,27,27,9) | +-1,?,?,+-1;0 | CBF 1a(8,13) | |
| 13 | 2113 | 0 | 02110 | 24 | | | | | | | | |
| | | | | | 1984 [3] | -67480 | R4,4 | 9,9,3,3 | (9,9,9,3) | +-1,+-1,+-1,0;0 | CBF 1a(6,9) | |
| | | | | | 2003 [8] | -159208 | R6,4 | 27,9,3,3 | (27,27,9,3) | ?,+-1,+-1,?;0 | CBF 2a(8,11) | |
| | | | | | 2010 | 8321505 | R4,4 | 9,9,3,3 | (9,9,9,3) | +-1,+-1,+-1,0;0 | CBF 1a(6,9) | |
| | | | | | 2010 | 8127208 | R6,4 | 27,9,3,3 | (27,27,9,3) | ?,+-1,+-1,?;0 | CBF 2a(8,11) | |
G | | | | | | | | | | | | |
| 16 | 2134 | 2 | 01111 | 6 | | | | | | | | |
| | | | | | 1981 [2] | -17131 | Z5 | 9,3,3,3 | (27,9,3) | ?,?,?,?;1 | CBF 2b(7,8) | |
| | | | | | 2010 | -819743 | Z7 | 27,3,3,3 | (81,27,3) | ?,?,?,?;1 | CBF 2b(9,10) | |
| | | | | | 2003 [8] | -135059 | V5,5 | 9,9,3,3 | (9,9,9,9) | +-1,0,+-1,1;-1 | CBF 1b(7,10) | |
| | | | | | 2006 [10] | -290703 | V'5,5 | 9,9,3,3 | (27,9,9,3) | ?,0,?,+-1;1 | CBF 1b(7,10) | |
| | | | | | 2010 | 8711453 | Z5 | 9,3,3,3 | (27,9,3) | ?,?,?,?;1 | CBF 2b(7,8) | |
| 19 | 2143 | 0 | 01111 | 3 | | | | | | | | |
| | | | | | 1981 [2] | -12067 | Z | 3,3,3,3 | (3,3,3,3) | +-1,0,1,-1;-1 | CBF 1b(5,6) | |
| | | | | | 2003 [8] | -96827 | T'5,5 | 9,9,3,3 | (27,9,9,3) | ?,+-1,?,0;1 | CBF 1b(7,10) | |
| | | | | | 2005 [10] | -199735 | T5,5 | 9,9,3,3 | (9,9,9,9) | ?,+-1,?,0;-1 | CBF 1b(7,10) | |
| | | | | | 2010 | -509160 | T'7,5 | 27,9,3,3 | (81,27,9,3) | ?,+-1,?,0;1 | CBF 2b(9,12) | |
| | | | | | 2006 [10] | 214712 | Z | 3,3,3,3 | (3,3,3,3) | +-1,0,1,-1;-1 | CBF 1b(5,6) | |
H | 4 | 2111 | 0 | 03100 | 12 | | | | | | | | |
| | | | | | 1981 [2] | -3896 | Z' | 3,3,3,3 | (9,3,3) | +-1,1,+-1,+-1;1 | CBF 1b(5,6) | |
| | | | | | 2003 [3,5,7] | -21668 | Z'5 | 9,3,3,3 | (27,9,3) | +-1,-1,+-1,+-1;-1 | CBF 2b(7,8) | |
| | | | | | 2009 [11] | -446788 | Z'7 | 27,3,3,3 | (81,27,3) | +-1,-1,+-1,+-1;-1 | CBF 2b(9,10) | |
| | | | | | 2004 [8] | -186483 | V5,5 | 9,9,3,3 | (9,9,9,9) | +-1,1,+-1,+-1;-1 | CBF 1b(7,10) | |
| | | | | | 2006 [10] | -256935 | V'5,5 | 9,9,3,3 | (27,9,9,3) | ?,+-1,?,+-1;1 | CBF 1b(7,10) | |
| | | | | | 2010 | -678804 | V7,5 | 27,9,3,3 | (81,27,9,3) | +-1,1,+-1,+-1;-1 | CBF 2b(9,12) | |
| | | | | | 2009 [11] | 957013 | Z' | 3,3,3,3 | (9,3,3) | +-1,1,+-1,+-1;1 | CBF 1b(5,6) | |
| | | | | | 2010 | 1162949 | Z'5 | 9,3,3,3 | (27,9,3) | +-1,-1,+-1,+-1;-1 | CBF 2b(7,8) | |
a | | | | | | | | | | | | |
| 1 | 0000 | 0 | 40000 | 1 | | | | | | | | |
| | | | | | 1981 [2] | 62501 | Y'4 | 9,3,3,3 | (9,9) | ?,0;1 | CF 2b(6) | |
| | | | | | 2010 | 2905160 | Y'6 | 27,3,3,3 | (27,27) | ?,0;1 | CF 2b(8) | |
| 2 | 1000 | 1 | 31000 | 4 | | | | | | | | |
| | | | | | 1981 [2] | 72329 | Y2 | 3,3,3,3 | (3,3) | 1,0;0 | CF 2a(4) | |
| | | | | | 2009 [11] | 790085 | Y4 | 9,3,3,3 | (9,9) | 1,0;0 | CF 2a(6) | |
| 3 | 0100 | 0 | 31000 | 12 | | | | | | | | |
| | | | | | 1981 [2] | 32009 | Y2 | 3,3,3,3 | (3,3) | 0,-1;0 | CF 2a(4) | |
| | | | | | 2009 [11] | 142097 | Y2 | 3,3,3,3 | (3,3) | 0,+1;0 | CF 2a(4) | |
| | | | | | 2008 [11] | 494236 | Y4 | 9,3,3,3 | (9,9) | 0,+-1;0 | CF 2a(6) | |
b | | | | | | | | | | | | |
| 10 | 2100 | 0 | 21100 | 6 | 2009 [11] | 710652 | V4,4 | 9,9,3,3 | (9,9,3,3) | 0,0,0,0;1 | CBF 1b(6,8) | |
c | | | | | | | | | | | | |
| 18 | 2011 | 0 | 12100 | 12 | 2009 [11] | 534824 | X3 | 9,3,3,3 | (9,3,3) | 0,-1,0,1;0 | CBF 2a(5,6) | |
| 21 | 1203 | 2 | 11110 | 12 | | | | | | | | |
| | | | | | 2008 [11] | 540365 | X3 | 9,3,3,3 | (9,3,3) | 0,0,0,1;0 | CBF 2a(5,6) | |
| | | | | | 2010 | 1001957 | X5 | 27,3,3,3 | (27,9,3) | 0,0,0,1;0 | CBF 2a(7,8) | |
d | | | | | | | | | | | | |
| 19 | 2110 | 0 | 12100 | 24 | 2010 | 2328721 | R4,3 | 9,9,3,3 | (9,9,3,3) | 1,0,+-1,0;0 | CBF 2a(6,8) | |
| 23 | 1320 | 1 | 11110 | 12 | 2010 | 1535117 | R4,3 | 9,9,3,3 | (9,9,3,3) | 1,0,0,0;0 | CBF 2a(6,8) | |
| 25* | 0321 | 0 | 11110 | 12 | 2010 | 8491713 | R5,4 | 27,9,3,3 | (27,9,9,3) | 0,+-1,0,0;0 | CBF 2a(7,10) | |
|
|