The Distribution of Second p-Class Groups on Coclass Graphs

Conference: 27th Journées Arithmétiques

Place: Vilnius, Lithuania

Date and time: Friday, July 1st, 2011,

15:00 - 15:20

Author: Daniel C. Mayer

Abstract.

For a given prime p, Leedham-Green, Newman, and Eick have defined the structure of a directed graph $\mathcal{G}(p)$ on the set of all isomorphism classes of finite p-groups. Two vertices are connected by an edge $G \to H$ if G is isomorphic to the last lower central quotient $H/\gamma_c(H)$ where $c = \operatorname{cl}(H)$ denotes the nilpotency class of H.

If the condition |H| = p|G| is imposed on the edges, $\mathcal{G}(p)$ is partitioned into countably many disjoint subgraphs $\mathcal{G}(p,r)$, $r \geq 0$, called *coclass graphs* of *p*-groups G of coclass $r = \operatorname{cc}(G) = n - \operatorname{cl}(G)$ where $|G| = p^n$.

A coclass graph $\mathcal{G}(p,r)$ is a forest of finitely many coclass trees $\mathcal{T}(G_i)$ with roots G_i , each with a single infinite main line having a pro-p-group of coclass r as its inverse limit, and additionally contains finitely many sporadic groups outside of coclass trees: $\mathcal{G}(p,r) = (\bigcup_i \mathcal{T}(G_i)) \cup \mathcal{G}_0(p,r)$.

By Artin's reciprocity law, the second p-class groups $G_p^2(K) = \operatorname{Gal}(F_p^2(K)|K)$ of algebraic number fields K, where $F_p^2(K)$ denotes the second Hilbert p-class field of K, are vertices of the metabelian skeleton of $\mathcal{G}(p)$.

Our aim is firstly to provide a general algorithm for determining the structure of $G_p^2(K)$ for a given number field K by means of number theoretical invariants of the intermediate fields $K \leq N \leq \mathrm{F}_p^1(K)$ between K and its first Hilbert p-class field $\mathrm{F}_p^1(K)$ and secondly to show that the arithmetic of special types of base fields K gives rise to selection rules for $G_p^2(K)$, e.g.

- If p = 2 and K is complex quadratic of type (2, 2), there are no selection rules and $\mathcal{G}(2, 1)$ is entirely populated by the $G_2^2(K)$, apart from the isolated group C_4 .
- If p = 3 and K is complex quadratic of type (3,3) or real quadratic of type (3,3) without total principalization, then either $G_3^2(K)$ is sporadic or lies on an even branch \mathcal{B}_{2k} of a coclass tree of an even coclass graph $\mathcal{G}(3,2j)$.
- If $p \geq 3$, K is quadratic of type (p, p), and $G_p^2(K)$ is of coclass 1, then K must be real quadratic and $G_p^2(K)$ lies on an odd branch \mathcal{B}_{2k+1} of the unique coclass tree $\mathcal{T}(C_p \times C_p)$ of $\mathcal{G}(p, 1)$.

Our aforementioned new algorithm is based on the family of transfers $V_i: G/G' \to U_i/U_i'$ from a metabelian p-group G to all intermediate groups $G' \leq U_i \leq G$. We prove that the main lines of coclass trees, and all other coclass families arising from the periodicity of branches, share a common transfer kernel type $\varkappa(G) = (\ker(V_i))$ and that $\varkappa(G)$ is determined by the transfer target type $\tau(G) = (\operatorname{str}(U_i/U_i'))$ where $\operatorname{str}(A)$ denotes the multiplet of type invariants of an abelian p-group A. Consequently, the structure of $G_p^2(K)$ and the principalization type of a number field K is determined by the structures of the p-class groups $\operatorname{Cl}_p(N_i)$ of all intermediate fields $K \leq N_i \leq \operatorname{F}_p^1(K)$, according to the Artin reciprocity law.

We have implemented this algorithm in PARI/GP to determine the structure of the second 3-class groups $G_3^2(K) = \operatorname{Gal}(F_3^2(K)|K)$ of the 4596 quadratic number fields $K = \mathbb{Q}(\sqrt{D})$ with discriminant $-10^6 < D < 10^7$ and 3-class group $\operatorname{Cl}_3(K)$ of type (3,3) and to analyze their distribution on the coclass graphs $\mathcal{G}(3,r)$, $1 \le r \le 6$.

References.

- [1] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. (2011), DOI 10.1007/s00605-010-0277-x.
- [2] D. C. Mayer, The second p-class group of a number field (preprint 2010).
- [3] D. C. Mayer, Principalization algorithm via class group structure (preprint 2011).

Section 0.

Introduction and Notation

$\begin{array}{c} \textbf{Interaction:} \\ \textbf{Class Field Theory} \longleftrightarrow \textbf{Group Theory} \end{array}$

 $p \ge 2$ prime,

K algebraic number field with p-class rank $r_p(Cl_p(K)) \ge 2$.

TABLE 1. Second Hilbert p-class field $F_p^2(K)$ and second p-class group $G = \operatorname{Gal}(F_p^2(K)|K)$

$$\begin{array}{|c|c|c|c|c|}\hline F_p^2(K) & 1 = \operatorname{Gal}(F_p^2(K)|F_p^2(K)) & \operatorname{The head's abelianizations} \\ & & & \operatorname{contain information on} \\ F_p^1(N_i) & \operatorname{Galois} & U_i' = \operatorname{Gal}(F_p^2(K)|F_p^1(N_i)) & p\text{-class groups} \\ & & \operatorname{correspondence} \\ F_p^1(K) & \longleftrightarrow & G' = \operatorname{Gal}(F_p^2(K)|F_p^1(K)) & \simeq & \operatorname{Cl}_p(F_p^1(K)) \\ & & & & & \\ N_i & & & & & \\ N_i & & & & & \\ & & & & & \\ K & & & & & \\ G = \operatorname{Gal}(F_p^2(K)|K) & \longrightarrow & G/G' \simeq \operatorname{Gal}(F_p^1(K)|K) \simeq \operatorname{Cl}_p(K) \\ & & & & \\ \end{array}$$

 $(U_i)_i$ family of all intermediate normal groups $G' \leq U_i \leq G$, called the *head* of G, $(N_i)_i$ family of all intermediate fields $K \leq N_i \leq \mathrm{F}^1_p(K)$, satisfying $U_i = \mathrm{Gal}(\mathrm{F}^2_p(K)|N_i)$ and $U_i/G' \simeq \mathrm{Norm}_{N_i|K}(\mathrm{Cl}_p(N_i))$.

$\mathbf{Principalization} \longleftrightarrow \mathbf{Transfer}$

Table 2. Family of class extensions $j_{N_i|K}$ and transfers V_{G,U_i}

Table 3. Corresponding invariants of K and its second p-class group $G = G_p^2(K)$

p-Principalization Type of K	$\mid Transfer \ Kernel \ Type \ (\mathbf{TKT}) \ of \ G \mid$
$\varkappa(K) = (\ker(\mathbf{j}_{N_i K}))_i$	$\varkappa(G) = (\ker(V_i))_i$
Total p-Principalization, for $N_i \neq F_p^1(K)$	Total Transfer, for $U_i \neq G'$
$\nu(K) = \#\{i \mid \ker(j_{N_i K}) = \operatorname{Cl}_p(K)\}$	$\nu(G) = \#\{i \mid \ker(V_i) = G/G'\}$
p-Class Group Structure Type of K	Transfer Target Type (\mathbf{TTT}) of G
$\tau(K) = (\operatorname{str}(\operatorname{Cl}_p(N_i)))_i$	$\tau(G) = (\operatorname{str}(U_i/U_i'))_i$
Exceptional p-rank, for $N_i \neq \mathcal{F}_p^1(K)$	Exceptional p-rank, for $U_i \neq G'$
$\varepsilon(K) = \#\{i \mid r_p(\operatorname{Cl}_p(N_i)) \ge p\}$	$\varepsilon(G) = \#\{i \mid \mathbf{r}_p(U_i/U_i') \ge p\}$
p-Class Group Order Type of K	Weak Transfer Target Type of G
$\tau_0(K) = (\operatorname{ord}(\operatorname{Cl}_p(N_i)))_i$	$\tau_0(G) = (\operatorname{ord}(U_i/U_i'))_i$

Terminology concerning Coclass Graphs $\mathcal{G}(p,r)$

- Coclass cc(G) of a finite p-group G of order $|G| = p^n$ and nilpotency class cl(G) is defined by n = cl(G) + cc(G).
- Vertex: the isomorphism class of a finite p-group G of coclass cc(G) = r.
- H is Immediate Descendant of G, if G is isomorphic to the last lower central quotient $H/\gamma_c(H)$, with nilpotency class $c = \operatorname{cl}(H)$ and $\gamma_c(H)$ cyclic of order p. Then G and H are connected by a **directed edge** $G \to H$.
- Capable Vertex: has at least one immediate descendant. Terminal Vertex: has no immediate descendants.
- *H* is **descendant** of *G*, if there is a path of directed edges from *G* to *H*. In particular, *H* is descendant of itself, with empty path.
- Tree $\mathcal{T}(G)$ with root G: consists of all descendants of G.
- Coclass Tree: maximal rooted tree containing exactly one infinite path.
- Main Line: the unique maximal infinite path of a coclass tree.
- Branch $\mathcal{B}(G)$ with root G on a main line: $\mathcal{T}(G) \setminus \mathcal{T}(H)$, H denoting the immediate descendant of G on the main line.
- **Depth** dp(H) of a vertex H on a branch $\mathcal{B}(G)$: its distance from the root G on the main line. $\mathcal{B}_d(G)$ denotes the **branch of bounded depth** d.
- Coclass Family $\mathcal{F}(H)$ of a vertex $H \in \mathcal{B}_d(G_n)$, where G_n denotes the vertex of order p^n on the main line (n sufficiently large that periodicity has set in already): the infinite sequence $(H_i)_{i\geq 0}$ of vertices defined recursively by $H_0 = H$ and $H_i = \varphi_{n+(i-1)\ell}(H_{i-1})$ for $i \geq 1$ using the periodicity isomorphisms of graphs $\varphi_n : \mathcal{B}_d(G_n) \to \mathcal{B}_d(G_{n+\ell})$ with period length $\ell = p - 1$.

Summary of Most Recent Fundamental Insights

- Coclass Theory is particularly well suited as a foundation not only of p-Group Theory but also of Class Field Theory.
- A Coclass Family is arranged *vertically* on a Coclass Graph and has a Parametrized Presentation for all members (whereas an Isoclinism Family is arranged *horizontally*, intersects with infinitely many Coclass Graphs, and does not admit a uniform presentation).
- Members of a Coclass Family share a Common Transfer Kernel Type (TKT) and can be viewed as Excited States $T \uparrow^n$ of a Ground State T. (There are, however, Isoclinism Families all of whose members have different TKT.)
- New Top-Down Class Number Formulas for certain Distinguished Fields N_1, N_2 reveal the Invariants of the Group $G_p^2(K)$.
- The Modern Top-Down Algorithm either determines the Group uniquely or within a Finite Batch of closely related isoclinic groups (whereas the Classical Bottom-Up Principalization Algorithm only indicates the Infinite Coclass Family to which the Group $G_p^2(K)$ belongs).
- Total Principalization in the Distinguished Field N_2 determines Selection Rules for the Group $G_p^2(K)$ of Quadratic Base Fields K: Parity of the Coclass Graph $\mathcal{G}(p,r)$ and of the Branch $\mathcal{B}(j)$.
- Vertices on Main Lines possess at least One Total Principalization $\varkappa(1) = 0$.
- Miech's Invariant k together with Total Principalization in the Distinguished Field N_1 determines the Depth of the Group $G_p^2(K)$ on its Coclass Tree \mathcal{T} .
- The recently discovered Connection between the TKT μ and the Transfer Target Type (TTT) τ made it possible to Extend the Computation of G₃²(K) to incredible 2020 complex and 2576 real Quadratic Fields K = Q(√D) with discriminants −10⁶ < D < 10⁷ by means of the Top-Down Algorithm.
 (The previous state of the art was that Heider and Schmithals computed μ, but not G₃²(K), for 13 complex and 5 real K within −2 · 10⁴ < D < 10⁵ using the Bottom-Up Algorithm.)

Section 1.

p-Groups G of Coclass cc(G) = 1

 $(p \ge 2 \text{ prime})$

Asymmetry of the Head of Metabelian *p*-Groups of Coclass 1

Wiman Blackburn Lemma. $p \geq 2$ prime, $G \in \mathcal{G}(p,1) \Longrightarrow$

- 1. The abelianization G/G' is of **diamond type** (p, p),
- 2. The 2-step centralizer $\chi_2(G)$ of $\gamma_2(G) = G'$ with the property

$$[\chi_2(G), \gamma_2(G)] \le \gamma_4(G)$$

is strictly bigger than $\gamma_2(G)$, provided that $|G| \geq p^4$, and causes a **polarization** of the **diamond head**:

Parametrized Presentations for Metabelian p-Groups of Coclass 1

Representatives for the vertices of $\mathcal{G}(p,1)$ are the groups

$$G = G_a^n(z, w) = \langle x, y \rangle$$

with 2 generators which satisfy the Blackburn Miech Relations

$$x^p = s_{n-1}^w, \quad y^p \prod_{\ell=2}^p s_\ell^{\binom{p}{\ell}} = s_{n-1}^z, \quad [y, s_2] = \prod_{r=1}^k s_{n-r}^{a(n-r)}, \quad |G| = p^n,$$

where $s_2 = [y, x] \in \gamma_2(G)$ and $s_i = [s_{i-1}, x] \in \gamma_i(G)$ for $i \geq 3$, and $x \in G \setminus \chi_2(G)$, if $n \geq 4$, $y \in \chi_2(G) \setminus \gamma_2(G)$.

Miech's invariant
$$0 \le k \le \min(n-4, p-2)$$
 is defined by $[\gamma_2(G), \gamma_2(G)] = \gamma_{n-k}(G)$

and provides a measure for the deviation from the maximal degree of commutativity.

The Coclass Graph $\mathcal{G}(2,1)$

Burnside Gorenstein Theorem.

- 1. $G/G' \simeq (2,2) \Longrightarrow G \in \mathcal{G}(2,1)$.
- 2. $G \in \mathcal{G}(2,1) \Longrightarrow G$ metabelian.

 $(C_2 \times C_2, (D(2^n))_{n \ge 3}).$ Main line:

 $(D(2^n))_{n\geq 3}, (Q(2^n))_{n\geq 4}, (SD(2^n))_{n\geq 4}, \text{ with invariant } k=0.$ $C_4, C_2 \times C_2 = V_4, Q(8).$ $\mathcal{B}_1(D(2^n)) \simeq \mathcal{B}_1(D(2^{n+1})) \text{ for } n\geq 3.$ 3 coclass families:

Sporadic groups:

Periodicity of branches:

Maximal depth: d = 1. $\ell=1.$ Period length:

The Coclass Graph $\mathcal{G}(3,1)$

Wiman Blackburn Theorem.

 $G \in \mathcal{G}(3,1) \Longrightarrow G$ metabelian.

Main line: $(C_3 \times C_3, (G_0^n(0,0))_{n \ge 3}).$

13 coclass families: one for even n only,

 $(G_0^n(-1,0))_{n\geq 4}$, with k=0,

and the others for n either even or odd,

 $(G_0^n(0,0))_{n\geq 3}, (G_0^n(0,1))_{n\geq 4}, (G_0^n(1,0))_{n\geq 5},$ with invariant k=0,

 $(G_1^n(0,0))_{n\geq 5}$, $(G_1^n(0,1))_{n\geq 5}$, $(G_1^n(0,-1))_{n\geq 5}$, with k=1.

Sporadic groups: $C_9, C_3 \times C_3, G_0^3(0,1), G_0^4(1,0) \simeq \text{Syl}_3(A_9).$

Periodicity of branches: $\mathcal{B}_1(G_0^n(0,0)) \simeq \mathcal{B}_1(G_0^{n+2}(0,0))$ for $n \geq 4$.

Maximal depth: d = 1. Period length: $\ell = 2$.

Coclass Families Share a Common Transfer Kernel Type (TKT)

Theorem 1. Transfer Kernel Type $\varkappa(G)$ for $\mathrm{cc}(G)=1,\,p\geq 3$

Table 4. $\varkappa(G)$ in dependence on $G \in \mathcal{G}(p,1)$ for $p \geq 3$

			<i>p</i> -Grou	$\operatorname{ip} G_a^n(z)$						
								$\overline{}$		
TKT	\varkappa	ν	G	cl(G)	n	a	z	w	dp(G)	tree position
a.1	$(\overbrace{0\dots 0}^{p+1 \text{ times}})$ $p+1 \text{ times}$	p+1	$C_p \times C_p$	1	2				0	root
A.1	$(\widetilde{11})$	0	$G_0^3(0,1)$	2	3	0	0	1	1	sporadic
	p+1 times									
a.1	$(\widetilde{00})$	p+1	$G_0^n(0,0)$	≥ 2	≥ 3	0	0	0	0	main line
a.2	$(1 \underbrace{0 \dots 0}_{p \text{ times}})$	p	$G_0^n(0,1)$	≥ 3	≥ 4	0	0	1	1	cc-families
a.3	(200) $p+1 times$	p	$G_0^n(z,0)$	≥ 3	≥ 4	0	$\neq 0$	0	1	cc-families
a.1	$(\overbrace{00})$	p+1	$G_a^n(z,w)$	≥ 4	≥ 5	$\neq 0$			≥ 1	cc-families

Proof: D. C. Mayer, April 2010, see [1] Transfers of metabelian p-groups, Thm.2.6.

Theorem 2. Transfer Kernel Type $\varkappa(G)$ for cc(G) = 1, p = 2

Table 5. $\varkappa(G)$ in dependence on $G \in \mathcal{G}(2,1)$

			2-Group $G_a^n(z, w)$ of Coclass 1							
				^				$\overline{}$		
TKT	\varkappa	ν	G	$\operatorname{cl}(G)$	n	a	z	w	dp(G)	tree position
a.1	(000)	3	$C_2 \times C_2$	1	2				0	root
Q.5	(123)	0	Q(8)	2	3	0	0	1	1	sporadic
d.8	(032)	1	$D(2^n)$	≥ 2	≥ 3	0	0	0	0	main line
Q.6	(132)	0	$Q(2^n)$	≥ 3	≥ 4	0	0	1	1	coclass family
S.4	(232)	0	$SD(2^n)$	≥ 3	≥ 4	0	1	0	1	coclass family

Proof: D. C. Mayer, October 2009, see [1] Transfers of metabelian p-groups, Thm.2.5.

Branch and Depth on the Coclass Tree $\mathcal{T}(C_p \times C_p)$

Theorem 3. The Weak TTT τ_0 for $p \geq 2$, cc(G) = 1 is given by

$$h_p(F_p^1(K)) = p^{cl(G)-1},$$

 $h_p(N_1) = p^{cl(G)-k},$
 $h_p(N_i) = p^2 \text{ for } 2 \le i \le p+1.$

Whereas $h_p(N_2), \ldots, h_p(N_{p+1})$ only indicate that cc(G) = 1, $h_p(F_p^1(K))$ determines the order p^n , n = cl(G) + 1, and class of G, and the distinguished $h_p(N_1)$ gives the invariant k of G.

The **Branch Root Order** of G is given by cl(G) + 1 - dp(G),

where the **Depth** of G is
$$dp(G) = \begin{cases} k, & \text{if } \varkappa(1) = 0, \\ k+1, & \text{if } \varkappa(1) \neq 0. \end{cases}$$

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Thm.3.2.

Selection Rules for $K = \mathbb{Q}(\sqrt{D}), p \ge 3, \operatorname{cc}(G) = 1$

Theorem 4. If $G \in \mathcal{G}(p,1)$, then K must be real quadratic, D > 0, and

the p-class numbers of the non-Galois subfields L_i of N_i are given by

$$h_p(L_1) = p^{\frac{\operatorname{cl}(G) - \operatorname{dp}(G)}{2}},$$

$$h_p(L_i) = p \text{ for } 2 \le i \le p + 1.$$

Whereas $h_p(L_2), \ldots, h_p(L_{p+1})$ do not give any information, the distinguished $h_p(L_1)$ enforces $cl(G) - dp(G) \equiv 0 \pmod{2}$.

The Branch Root Order of G is odd,

$$\operatorname{cl}(G) + 1 - \operatorname{dp}(G) \equiv 1 \pmod{2}.$$

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Thm.4.1.

Population of the Coclass Graph G(2,1)

• The numerical results suggest the conjecture that the tree $\mathcal{T}(V_4)$ is covered entirely by second 2-class groups $G_2^2(K)$ of complex quadratic fields $K = \mathbb{Q}(\sqrt{D}), D < 0$.

FIGURE 1. TKTs and selection rule for $G_5^2(K)$, $K=\mathbb{Q}(\sqrt{D})$, D>0, on the metabelian skeleton of $\mathcal{G}(5,1)$, where bigger values of $0\leq k\leq 3$ occur.

Section 2.

3-Groups G of Coclass cc(G) = r

$$(r \ge 2)$$

Parametrized Presentations for Metabelian 3-Groups of Coclass at least 2 with Abelianization of type (3,3)

Nebelung's Lemma. $G \in \mathcal{G}(3,r), r \geq 2 \Longrightarrow$

The smallest integer $s \geq 2$ such that the 2-step centralizer $\chi_s(G)$ of $\gamma_s(G)$ with the property

$$[\chi_s(G), \gamma_s(G)] \le \gamma_{s+2}(G)$$

is strictly bigger than $\gamma_2(G) = G'$ satisfies the inequalities

$$3 \le r + 1 \le s \le r + 2$$
.

Representatives for the vertices of $\mathcal{G}(3,r)$, $r \geq 2$, are the groups

$$G = G_{\rho}^{m,n}(\alpha, \beta, \gamma, \delta) = \langle x, y \rangle$$

with 2 generators x, y which satisfy the **Nebelung Relations**

$$s_{2}^{3} = \sigma_{4}\sigma_{m-1}^{-\rho\beta}\tau_{4}^{-1}, \quad s_{3}\sigma_{3}\sigma_{4} = \sigma_{m-2}^{\rho\beta}\sigma_{m-1}^{\gamma}\tau_{e}^{\delta}, \quad t_{3}^{-1}\tau_{3}\tau_{4} = \sigma_{m-2}^{\rho\delta}\sigma_{m-1}^{\alpha}\tau_{e}^{\beta}, \quad \tau_{e+1} = \sigma_{m-1}^{-\rho},$$

$$\operatorname{cl}(G) = m-1, \quad |G| = 3^{n}, \quad e = n-m+2 = \operatorname{cc}(G)+1, \text{ where}$$

$$s_{2} = t_{2} = [y, x] \in \gamma_{2}(G), \quad s_{i} = [s_{i-1}, x], t_{i} = [t_{i-1}, y] \in \gamma_{i}(G) \text{ for } i \geq 3,$$

$$\sigma_{3} = y^{3}, \tau_{3} = x^{3} \in \gamma_{3}(G), \quad \sigma_{i} = [\sigma_{i-1}, x], \tau_{i} = [\tau_{i-1}, y] \in \gamma_{i}(G) \text{ for } i \geq 4,$$

$$\operatorname{and} \gamma_{3}(G)/\gamma_{4}(G) = \langle y^{3}, x^{3} \rangle, \quad x \in G \setminus \chi_{s}(G), \text{ if } e < m-1, \quad y \in \chi_{s}(G) \setminus G'.$$

Asymmetry of the Head of Metabelian 3-Groups of Coclass at least 2

The choice of y, x causes a **bipolarization** of the **diamond head**:

Miech's invariant $0 \le k \le 1$ is defined by

$$[\chi_s(G), \gamma_e(G)] = \gamma_{m-k}(G).$$

Top of Coclass Graph G(3,2) restricted to Groups with Abelianization of Type (3,3)

3 roots of coclass trees with metabelian main lines: $B=G_0^{5,6}(0,0,0,0),\ Q_0=G_0^{4,5}(0,-1,0,1),\ U_0=G_0^{4,5}(0,0,0,1).$ Isolated and sporadic groups: $Y=G_0^{4,5}(0,0,-1,1),\ Z=G_0^{4,5}(1,1,-1,1);\ W_0=G_0^{4,5}(-1,0,0,1),\ K_0=G_0^{4,5}(1,1,1,1).$

The Coclass Tree $\mathcal{T}(U_0) \subset \mathcal{G}(3,2)$

Structure Theorem.

$$G \in \mathcal{T}(U_0) \Longrightarrow \varepsilon(G) = 0.$$

TKT: E.9 E.8 c.21	G.16	G.16 G.16
(2231)(1231)(0231)	(4231)	(4231)(4231)

Main line:

10 coclass families:

 $(G_0^{n-1,n}(0,0,0,1))_{n\geq 5}, \text{ where } U_0=G_0^{4,5}(0,0,0,1),\ U=G_0^{5,6}(0,0,0,1).$ metabelian with invariant k=0: two for odd n only, $(G_0^{n-1,n}(0,0,-1,1))_{n\geq 7},\ (G_0^{n-1,n}(-1,0,0,1))_{n\geq 7},$ and the others for n either even or odd, $(G_0^{n-1,n}(0,0,0,1))_{n\geq 5},$ $(G_0^{n-1,n}(1,0,-1,1))_{n\geq 6},\ (G_0^{n-1,n}(0,0,1,1))_{n\geq 6},\ (G_0^{n-1,n}(1,0,0,1))_{n\geq 6},$ where $T=G_0^{5,6}(1,0,-1,1),\ V=G_0^{5,6}(0,0,1,1),\ S=G_0^{5,6}(1,0,0,1).$ $\mathcal{B}_3(G_0^{n-1,n}(0,0,0,1))\simeq\mathcal{B}_3(G_0^{n+1,n+2}(0,0,0,1)) \text{ for } n\geq 7.$ d=3

Periodicity of branches:

Maximal depth: d=3. $\ell=2.$ Period length:

The Coclass Tree $\mathcal{T}(Q_0) \subset \mathcal{G}(3,2)$

Structure Theorem.

$$G \in \mathcal{T}(Q_0) \Longrightarrow \varepsilon(G) = 1.$$

TKT: E.14 E.6 c.18	H.4	H.4 H.4
(2313)(1313)(0313)	(3313)	(3313)(3313)

Main line:

10 coclass families:

 $(G_0^{n-1,n}(0,-1,0,1))_{n\geq 5}, \text{ where } Q_0=G_0^{4,5}(0,-1,0,1), \ Q=G_0^{5,6}(0,-1,0,1).$ metabelian with invariant k=0: two for odd n only, $(G_0^{n-1,n}(0,-1,-1,1))_{n\geq 7}, \ (G_0^{n-1,n}(-1,-1,1,1))_{n\geq 7},$ and the others for n either even or odd, $(G_0^{n-1,n}(0,-1,0,1))_{n\geq 5}, \\ (G_0^{n-1,n}(1,-1,1,1))_{n\geq 6}, \ (G_0^{n-1,n}(0,-1,1,1))_{n\geq 6}, \ (G_0^{n-1,n}(1,-1,-1,1))_{n\geq 6}, \\ \text{where } P=G_0^{5,6}(1,-1,1,1), \ R=G_0^{5,6}(0,-1,1,1), \ O=G_0^{5,6}(1,-1,-1,1).$ $\mathcal{B}_3(G_0^{n-1,n}(0,-1,0,1)) \simeq \mathcal{B}_3(G_0^{n+1,n+2}(0,-1,0,1)) \text{ for } n\geq 7.$ d=3

Periodicity of branches:

Maximal depth: d=3. $\ell=2.$ Period length:

The Coclass Tree $\mathcal{T}(B) \subset \mathcal{T}(B_0) \subset \mathcal{G}(3,2)$

Structure Theorem.

 $G \in \mathcal{T}(B_0) \Longrightarrow \varepsilon(G) = 2.$

Selection Rule.

$$K = \mathbb{Q}(\sqrt{D}) \Longrightarrow G_3^2(K) \notin \mathcal{T}(B_0).$$

b.10 b.10 **TKT:** d.23 d.25 d.19 b.10 (1043)(2043)(4043)(0043)(0043)(0043)

Main line:

10 coclass families:

 $(G_0^{n-1,n}(0,0,0,0))_{n\geq 5}, \text{ where } B_0=G_0^{4,5}(0,0,0,0), \ B=G_0^{5,6}(0,0,0,0).$ metabelian with invariant k=0: two for odd n only, $(G_0^{n-1,n}(0,0,-1,0))_{n\geq 7}, \ (G_0^{m-1,n}(1,0,-1,0))_{n\geq 7},$ and the others for n either even or odd, $(G_0^{n-1,n}(0,0,0,0))_{n\geq 6}, \ (G_0^{n-1,n}(1,0,0,0))_{n\geq 6}, \ (G_0^{n-1,n}(0,0,1,0))_{n\geq 6}, \ (G_0^{n-1,n}(1,0,1,0))_{n\geq 6},$ where $D=G_0^{5,6}(1,0,0,0), \ G=G_0^{5,6}(0,0,1,0), \ J=G_0^{5,6}(1,0,1,0).$ $\mathcal{B}_2(G_0^{n-1,n}(0,0,0,0)) \simeq \mathcal{B}_2(G_0^{n+1,n+2}(0,0,0,0)) \text{ for } n\geq 7.$

Periodicity of branches:

d=2. Maximal depth: Period length: $\ell=2.$

Branch and Depth on a Coclass Tree

Theorem 5. The Weak TTT τ_0 for p=3, $cc(G) \ge 2$ is given by

$$\begin{array}{rcl} \mathrm{h}_3(\mathrm{F}_3^1(K)) & = & 3^{\mathrm{cl}(G) + \mathrm{cc}(G) - 2}, \\ & \mathrm{h}_3(N_1) & = & 3^{\mathrm{cl}(G) - k}, \\ & \mathrm{h}_3(N_2) & = & 3^{\mathrm{cc}(G) + 1}, \\ & \mathrm{h}_3(N_i) & = & 3^3 \text{ for } 3 \leq i \leq 4. \end{array}$$

Whereas $h_3(N_3)$ and $h_3(N_4)$ only indicate that $cc(G) \geq 2$, the distinguished $h_3(N_2)$ gives the precise coclass of G, $h_3(F_3^1(K))$ determines the order 3^n , n = cl(G) + cc(G), and class of G, and finally the distinguished $h_3(N_1)$ yields the invariant k of G.

The Branch Root Order of G is given by cl(G) + cc(G) - dp(G),

where the **Depth** of non-sporadic
$$G$$
 is $dp(G) = \begin{cases} k, & \text{if } \varkappa(1) = 0, \\ k+1, & \text{if } \varkappa(1) \neq 0. \end{cases}$

Proof: D. C. Mayer, May 2003, see [2] The second p-class group of a number field, Thm.3.4.

Selection Rules for $K = \mathbb{Q}(\sqrt{D}), p = 3, \operatorname{cc}(G) \ge 2$

Theorem 6. The 3-class numbers of the non-Galois subfields L_i of N_i are given by

$$egin{array}{lll} \mathrm{h}_3(L_1) &=& egin{cases} 3 rac{\mathrm{cl}(G) - (k+1)}{2}, & ext{for sporadic } G, \ 3 rac{\mathrm{cl}(G) - \mathrm{dp}(G)}{2}, & ext{otherwise}, \ \ \mathrm{h}_3(L_2) &=& egin{cases} 3 rac{\mathrm{cc}(G) + 1}{2}, & ext{if } arkappa(2) = 0, \ 3 rac{\mathrm{cc}(G)}{2}, & ext{if } arkappa(2)
eq 0, \ \ \mathrm{h}_3(L_i) &=& 3 ext{ for } 3 \leq i \leq 4. \end{cases}$$

Whereas $h_3(L_3)$ and $h_3(L_4)$ do not give any information, the distinguished $h_3(L_2)$ indicates the coclass of G and enforces

$$cc(G) \equiv \begin{cases} 1 \pmod{2}, & \text{if } \varkappa(2) = 0, \\ 0 \pmod{2}, & \text{if } \varkappa(2) \neq 0, \end{cases}$$

and the distinguished $h_3(L_1)$ demands $cl(G) - dp(G) \equiv 0 \pmod{2}$.

The **Branch Root Order** of non-sporadic G is given by

$$\operatorname{cl}(G) + \operatorname{cc}(G) - \operatorname{dp}(G) \equiv \begin{cases} 1 \pmod{2}, & \text{if } \varkappa(2) = 0, \\ 0 \pmod{2}, & \text{if } \varkappa(2) \neq 0. \end{cases}$$

Proof: D. C. Mayer, October 2005, see [2] The second p-class group of a number field, Thm.4.2.

The TTT τ determines the TKT \varkappa of densely populated sporadic groups

Theorem 7. Structures of Transfer Targets for cc(G) = 2, cl(G) = 3

Table 6. \varkappa in dependence on τ for p=3, n=5, k=0 (Isoclinism family Φ_6)

				Transfer Target Type τ						
TKT	\varkappa	ν	$\operatorname{Cl}_3(\mathrm{F}^1_3(K))$	$\operatorname{Cl}_3(N_1)$	$\operatorname{Cl}_3(N_2)$	$\operatorname{Cl}_3(N_3)$	$\operatorname{Cl}_3(N_4)$	ε		
b.10	(0043)	2	(3, 3, 3)	(9,3)	(9, 3)	(3, 3, 3)	(3, 3, 3)	2		
c.21	(0231)	1	(3, 3, 3)	(9,3)	(9, 3)	(9, 3)	(9, 3)	0		
c.18	(0313)	1	(3, 3, 3)	(9,3)	(9, 3)	(3, 3, 3)	(9, 3)	1		
D.10	(2241)	0	(3, 3, 3)	(9,3)	(9, 3)	(3, 3, 3)	(9, 3)	1		
G.19	(2143)	0	(3, 3, 3)	(9,3)	(9, 3)	(9, 3)	(9, 3)	0		
H.4	(4443)	0	(3, 3, 3)	(3,3,3)	(3, 3, 3)	(9, 3)	(3, 3, 3)	3		
D.5	(4224)	0	(3, 3, 3)	(3, 3, 3)	(9, 3)	(3, 3, 3)	(9, 3)	2		

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.4.

Theorem 8. Structures of Transfer Targets for cc(G) = 2, cl(G) = 4

Table 7. \varkappa in dependence on τ for p=3, n=6, k=1 (Isoclinism families $\Phi_{40}, \ldots, \Phi_{43}$)

				Transfer Target Type τ					
TKT	\varkappa	ν	$\operatorname{Cl}_3(\mathrm{F}^1_3(K))$	$\operatorname{Cl}_3(N_1)$	$\operatorname{Cl}_3(N_2)$	$\operatorname{Cl}_3(N_3)$	$\operatorname{Cl}_3(N_4)$	ε	
b.10	(0043)	2	(9, 3, 3)	(9,3)	(9,3)	(3, 3, 3)	(3, 3, 3)	2	
H.4	(4443)	0	(9, 3, 3)	(3, 3, 3)	(3, 3, 3)	(9,3)	(3, 3, 3)	3	
G.19	(2143)	0	(3,3,3,3)	(9, 3)	(9, 3)	(9, 3)	(9, 3)	0	
b.10	(0043)	2	(3, 3, 3, 3)	(9,3)	(9,3)	(3, 3, 3)	(3, 3, 3)	2	

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.5.

For p=2, however, \varkappa is not determined by τ .

Theorem 9. Structures of Transfer Targets for p=2, cc(G)=1Table 8. Different TKT's \varkappa sharing the same TTT τ , for each $n\geq 4$

			Transfer Target Type τ					
TKT	\varkappa	ν	$\operatorname{Cl}_2(\mathrm{F}^1_2(K))$	$\operatorname{Cl}_3(N_1)$	$\operatorname{Cl}_3(N_2)$	$\operatorname{Cl}_3(N_3)$	ε	
a.1	(000)	3	1	(2)	(2)	(2)	0	
Q.5	(123)	0	(2)	(4)	(4)	(4)	0	
d.8	(032)	1	(2^{n-2})	(2^{n-1})	(2,2)	(2,2)	2	
Q.6	(132)	0	(2^{n-2})	(2^{n-1})	(2, 2)	(2, 2)	2	
S.4	(232)	0	(2^{n-2})	(2^{n-1})	(2, 2)	(2, 2)	2	

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Sec.9.

Section 3.

Second 3-Class Groups $G_3^2(K)$

of Quadratic Fields $K = \mathbb{Q}(\sqrt{D})$

Methods for Determining the Group $G_3^2(K)$

The following table shows the fineness of resolution, i.e. the accuracy, in determining the position of $G_3^2(K)$ on the coclass graphs $\mathcal{G}(3,r)$, obtained by Scholz and Taussky's Classical Bottom-Up Algorithm, by our Recent Top-Down Algorithm, and by a combination of both algorithms, for each transfer kernel type (TKT) \varkappa . By a **family** we understand an infinite coclass family and by an m-batch we understand a multiplet of $m \geq 2$ immediate descendants of a common parent.

Table 9. Comparison of the Bottom-Up and Top-Down Algorithm

	Algorithm							
TKT	Bottom-Up	Combined	Top-Down					
a.1	3 families	3-batch	3-batch					
a.2	family	vertex	3-batch with a.3					
a.3*	2 families with a.3	vertex	vertex					
a.3	2 families with a.3*	vertex	2-batch with a.2					
a.3↑	2 families	2-batch	3-batch with a.2					
b.10	infinitely many families	6- or 9-batch	6- or 9-batch					
c.18	main line	vertex	vertex					
c.21	main line	vertex	vertex					
d*.19	infinitely many main lines	2 vertices on different trees	5 vertices on different trees					
d*.23	infinitely many main lines	vertex	5 vertices on different trees					
d*.25	infinitely many main lines	2 vertices on different trees	5 vertices on different trees					
d.19	infinitely many families	2-batch	5-batch with $d.23,25$					
d.23	infinitely many families	vertex	5-batch with d.19,25					
d.25	infinitely many families	2-batch	5-batch with $d.19,23$					
A.1	impossible	impossible	impossible					
D.5	vertex	vertex	vertex					
D.10	vertex	vertex	vertex					
G.19	infinitely many families	2-batch	2-batch					
H.4	infinitely many families	4-batch	4-batch					
E.6	family	vertex	3-batch with E.14					
E.14	2 families	2-batch	3-batch with E.6					
E.8	family	vertex	3-batch with E.9					
E.9	2 families	2-batch	3-batch with E.8					
G.16	infinitely many families	two 4-batches	two 4-batches					
H.4↑	infinitely many families	two 4-batches	two 4-batches					
F.7	infinitely many families	3-batch	13-batch with F.11,12,13					
F.11	infinitely many families	2-batch	13-batch with F.7,12,13					
F.12	infinitely many families	4-batch	13-batch with F.7,11,13					
F.13	infinitely many families	4-batch	13-batch with F.7,11,12					
G.16r	infinitely many families	4-batch	18 vertices with G.19r,H.4r					
G.19r	infinitely many families	two 3-batches	18 vertices with G.16r,H.4r					
H.4r	infinitely many families	two 4-batches	18 vertices with G.16r,G.19r					
G.16i	infinitely many families	3-batch	12 vertices with G.19i,H.4i					
G.19i	infinitely many families	4-batch	12 vertices with G.16i,H.4i					
H.4i	infinitely many families	5-batch	12 vertices with G.16i,G.19i					
F.7↑	infinitely many families	4 vertices on different trees	24 vertices on different trees					
F.11↑	infinitely many families	4 vertices on different trees	24 vertices on different trees					
F.12↑	infinitely many families	8 vertices on different trees	24 vertices on different trees					
F.13↑	infinitely many families	8 vertices on different trees	24 vertices on different trees					

Distribution on the Coclass Graph G(3,1)

- $G_3^2(K) \in \mathcal{G}(3,1)$ for 2303 (89.4%) of the 2576 discriminants $0 < D < 10^7$.
- Since the Transfer Kernel Types \varkappa of all coclass families are **total** with $\nu \geq 3$, there occur $G_3^2(K)$ of **real quadratic fields** $K = \mathbb{Q}(\sqrt{D}), D > 0$ only.
- Due to the **Selection Rule** (Theorem 4), the $G_3^2(K)$ are distributed on **odd** branches only. This is a restriction from 13 to 7 coclass families: the main line $(G_0^n(0,0))_{n\geq 3}$ for odd n, and the others for even n, $(G_0^n(0,1))_{n\geq 4}, (G_0^n(1,0))_{n\geq 4}, (G_0^n(-1,0))_{n\geq 4},$ with invariant k=0, $(G_1^n(0,0))_{n\geq 6}, (G_1^n(0,1))_{n\geq 6}, (G_1^n(0,-1))_{n\geq 6},$ with k=1. Only one of these groups is **intrinsically sporadic**: $G_0^4(1,0) \simeq \operatorname{Syl}_3(A_9)$.
- Open Problem: It is unknown why there is no actual hit of the main line.

Distribution among Sporadic Groups of G(3,2)

- $G_3^2(K) \in \mathcal{G}_0(3,2)$ for 1327 (65.7%) of the 2020 discriminants $-10^6 < D < 0$. $G_3^2(K) \in \mathcal{G}_0(3,2)$ for 178 (6.9%) of the 2576 discriminants $0 < D < 10^7$.
- Isolated and sporadic groups: $Y = G_0^{4,5}(0,0,-1,1), Z = G_0^{4,5}(1,1,-1,1); W_0 = G_0^{4,5}(-1,0,0,1), K_0 = G_0^{4,5}(1,1,1,1).$ It is **unknown** why there is no actual hit of the vertices W_0 and K_0 .

Distribution on the Coclass 2 Tree $\mathcal{T}(U_0)$

- $G_3^2(K) \in \mathcal{T}(U_0)$ for 291 (14.4%) of the 2020 discriminants $-10^6 < D < 0$.
- $G_3^2(K) \in \mathcal{T}(U_0)$ for 43 (1.7%) of the 2576 discriminants $0 < D < 10^7$.
- Since the Transfer Kernel Type $\varkappa = (0231)$ of the main line (c.21) is **total** with $\varkappa(1) = 0$, there only occur $G_3^2(K)$ of **real quadratic fields** $K = \mathbb{Q}(\sqrt{D}), D > 0$ on the main line.
- Due to the **Selection Rule** (Theorem 6), the $G_3^2(K)$ are distributed on **even** branches only. This is a restriction from 10 to 6 metabelian coclass families with invariant k = 0: the main line $(G_0^{n-1,n}(0,0,0,1))_{n\geq 6}$ for even n, and the others for odd n, $(G_0^{n-1,n}(0,0,-1,1))_{n\geq 7}$, $(G_0^{n-1,n}(0,0,1,1))_{n\geq 7}$, $(G_0^{n-1,n}(-1,0,0,1))_{n\geq 7}$, $(G_0^{n-1,n}(-1,0,0,1))_{n\geq 7}$, $(G_0^{n-1,n}(-1,0,0,1))_{n\geq 7}$.
- It is **unknown** why there is no actual hit of the vertices $(G_0^{n-1,n}(\pm 1,0,0,1))_{n\geq 7}$.

Distribution on the Coclass 2 Tree $\mathcal{T}(Q_0)$

- $G_3^2(K) \in \mathcal{T}(Q_0)$ for 270 (13.4%) of the 2020 discriminants $-10^6 < D < 0$.
- $G_3^2(K) \in \mathcal{T}(Q_0)$ for 39 (1.5%) of the 2576 discriminants $0 < D < 10^7$.
- Since the Transfer Kernel Type $\varkappa = (0313)$ of the main line (c.18) is **total** with $\varkappa(1) = 0$, there only occur $G_3^2(K)$ of **real quadratic fields** $K = \mathbb{Q}(\sqrt{D}), D > 0$ on the main line.
- Due to the **Selection Rule** (Theorem 6), the $G_3^2(K)$ are distributed on **even branches** only. This is a restriction from 10 to 6 metabelian coclass families with invariant k = 0: the main line $(G_0^{n-1,n}(0,-1,0,1))_{n\geq 6}$ for even n, and the others for odd n, $(G_0^{n-1,n}(0,-1,-1,1))_{n\geq 7}$, $(G_0^{n-1,n}(0,-1,1,1))_{n\geq 7}$, $(G_0^{n-1,n}(-1,-1,1,1))_{n\geq 7}$, $(G_0^{n-1,n}(-1,-1,1,1))_{n\geq 7}$.
- It is **unknown** why there is no actual hit of the vertices $(G_0^{n-1,n}(\pm 1, -1, \mp 1, 1))_{n \ge 7}$.

$$\mathcal{T}(b_{10}^3)\subset\mathcal{G}(3,3)$$

Structure Theorem.

 $G \in \mathcal{G}(3,3) \Longrightarrow \varepsilon(G) = 2.$

Selection Rule.

 $K=\mathbb{Q}(\sqrt{D}),\,G_3^2(K)\in\mathcal{G}(3,3)\Longrightarrow D>0,\,G_3^2(K)\in\mathcal{T}(b_{10}^3).$

TKT: d.23	d.25	d.19	b.10	b.10
(1043)	(2043)	(4043)	(0043)	(0043)

Main line: 10 coclass families:

$$\begin{split} &(G_0^{n-2,n}(0,0,0,0))_{n\geq 7}, \text{ with root } b_{10}^3 = G_0^{5,7}(0,0,0,0). \\ &\text{metabelian with invariant } k=0 \text{: two for even } n \text{ only,} \\ &(G_0^{n-2,n}(0,0,-1,0))_{n\geq 8}, (G_0^{n-2,n}(1,0,-1,0))_{n\geq 8}, \\ &\text{and the others for } n \text{ either even or odd, } (G_0^{n-1,n}(0,0,0,0))_{n\geq 7}, \\ &(G_0^{n-2,n}(1,0,0,0))_{n\geq 8}, (G_0^{n-2,n}(0,0,1,0))_{n\geq 8}, (G_0^{n-2,n}(1,0,1,0))_{n\geq 8}. \\ &\mathcal{B}_1(G_0^{n-2,n}(0,0,0,0)) \cong \mathcal{B}_1(G_0^{n,n+2}(0,0,0,0)) \text{ for } n\geq 8. \end{split}$$

Periodicity of branches:

Maximal depth: d=1 (restricted to the metabelian skeleton).

Period length:

Distribution on the Coclass 3 Tree $\mathcal{T}(b_{10}^3)$

- $G_3^2(K) \in \mathcal{G}(3,3)$ for 10 (0.4%) of the 2576 discriminants $0 < D < 10^7$.
- Since the Transfer Kernel Types \varkappa of all coclass families are **total** with $\varkappa(2) = 0$, there occur $G_3^2(K)$ of **real quadratic fields** $K = \mathbb{Q}(\sqrt{D}), D > 0$ only. • Due to the **Selection Rule** (Theorem 6), the $G_3^2(K)$ are distributed on **odd**
- branches only.
- It is **unknown** why there is no actual hit of the main line $(G_0^{n-2,n}(0,0,0,0))_{n\geq 7}$.

Top of Coclass Graph G(3,4) restricted to Groups with Abelianization of Type (3,3)

6 roots of coclass trees with metabelian main lines: $b_{10}^4 = G_0^{6,9}(0,0,0,0), \ d_{19}^* = G_0^{6,9}(0,1,0,1), \ d_{19}^*(-) = G_0^{6,9}(0,-1,0,1), \\ d_{23}^* = G_0^{6,9}(0,0,0,1), \ d_{25}^* = G_0^{6,9}(0,1,0,0), \ d_{25}^*(-) = G_0^{6,9}(0,-1,0,0). \\ 51 \text{ isolated and sporadic groups.}$

Distribution among Sporadic Groups of $\mathcal{G}(3,4)$

- $G_3^2(K) \in \mathcal{G}_0(3,4)$ for 112 (5.5%) of the 2020 discriminants $-10^6 < D < 0$. $G_3^2(K) \in \mathcal{G}_0(3,4)$ for 1 of the 2576 discriminants $0 < D < 10^7$.
- It is unknown why there is no actual hit of the roots of the sporadic trees.

$$\mathcal{T}(d_{19}^*) \subset \mathcal{G}(3,4)$$

Structure Theorem.

$$G \in \mathcal{G}(3,4) \Longrightarrow \varepsilon(G) = 2.$$

TKT: F.7 F.12 F.13 d*.19	H.4	H.4
(3443) (1343) (3143) (0443)	(3343)	(3343)

Main line:

14 coclass families:

 $(G_0^{n-3,n}(0,1,0,1))_{n\geq 9}, \text{ with root } d_{19}^* = G_0^{6,9}(0,1,0,1).$ metabelian with invariant k=0: four for odd n only, $(G_0^{n-3,n}(-1,1,1,1))_{n\geq 11}, (G_0^{n-3,n}(-1,1,0,1))_{n\geq 11}, (G_0^{n-3,n}(0,1,-1,1))_{n\geq 11}, (G_0^{n-3,n}(-1,1,-1,1))_{n\geq 11},$ and the others for n either even or odd, $(G_0^{n-3,n}(0,1,0,1))_{n\geq 9}, (G_0^{n-3,n}(1,1,-1,1))_{n\geq 10}, (G_0^{n-3,n}(1,1,0,1))_{n\geq 10}, (G_0^{n-3,n}(1,1,1,1))_{n\geq 10}.$ $\mathcal{B}_2(G_0^{n-3,n}(0,1,0,1)) \simeq \mathcal{B}_2(G_0^{n-1,n+2}(0,1,0,1)) \text{ for } n\geq 9.$ d=2 (restricted to the metabelian skeleton). $\ell=2$

Periodicity of branches:

Maximal depth:

Period length:

$$\mathcal{T}(d_{23}^*) \subset \mathcal{G}(3,4)$$

Structure Theorem.

$$G \in \mathcal{G}(3,4) \Longrightarrow \varepsilon(G) = 2.$$

TKT: F.11 F.12 d*.23	G.16	G.16
(1143)(1343)(0243)	(1243)	(1243)

Main line: 14 coclass families:

 $(G_0^{n-3,n}(0,0,0,1))_{n\geq 9}, \text{ with root } d_{23}^* = G_0^{6,9}(0,0,0,1).$ metabelian with invariant k=0: four for odd n only, $(G_0^{n-3,n}(0,0,-1,1))_{n\geq 11}, (G_0^{n-3,n}(-1,0,1,1))_{n\geq 11}, (G_0^{n-3,n}(-1,0,-1,1))_{n\geq 11}, (G_0^{n-3,n}(-1,0,0,1))_{n\geq 11},$ and the others for n either even or odd, $(G_0^{n-3,n}(0,0,1,1))_{n\geq 10}, (G_0^{n-3,n}(1,0,1,1))_{n\geq 10}, (G_0^{n-3,n}(1,0,0,1))_{n\geq 10},$ $(G_0^{n-3,n}(1,0,0,1))_{n\geq 10}.$ $\mathcal{B}_2(G_0^{n-3,n}(0,0,0,1)) \simeq \mathcal{B}_2(G_0^{n-1,n+2}(0,0,0,1)) \text{ for } n\geq 9.$ d=2 (restricted to the metabelian skeleton). $\ell=2$

Periodicity of branches:

Maximal depth:

Period length:

$$\mathcal{T}(d_{25}^*) \subset \mathcal{G}(3,4)$$

Structure Theorem.

$$G \in \mathcal{G}(3,4) \Longrightarrow \varepsilon(G) = 2.$$

TKT: F.13 F.11 d*.25	G.19	G.19
(3143)(1143)(0143)	(2143)	(2143)

Main line:

10 coclass families:

 $(G_0^{n-3,n}(0,1,0,0))_{n\geq 9}, \text{ with root } d_{25}^* = G_0^{6,9}(0,1,0,0).$ metabelian with invariant k=0: two for odd n only, $(G_0^{n-3,n}(1,1,-1,0))_{n\geq 11}, \ (G_0^{n-3,n}(0,1,-1,0))_{n\geq 11},$ and the others for n either even or odd, $(G_0^{n-3,n}(0,1,0,0))_{n\geq 9}, \\ (G_0^{n-3,n}(1,1,0,0))_{n\geq 10}, \ (G_0^{n-3,n}(1,1,1,0))_{n\geq 10}, \ (G_0^{n-3,n}(0,1,0,0))_{n\geq 10}.$ $\mathcal{B}_2(G_0^{n-3,n}(0,1,0,0)) \simeq \mathcal{B}_2(G_0^{n-1,n+2}(0,1,0,0)) \text{ for } n\geq 9.$ d=2 (restricted to the metabelian skeleton).

Periodicity of branches: Maximal depth: Period length:

Distribution on the Accumulated Coclass 4 Tree

- $G_3^2(K) \in \mathcal{G}(3,4) \setminus \mathcal{G}_0(3,4)$ for 19 (0.9%) of the 2020 discriminants $-10^6 < D < 0$. $G_3^2(K) \in \mathcal{G}(3,4) \setminus \mathcal{G}_0(3,4)$ for 2 of the 2576 discriminants $0 < D < 10^7$.
- The accumulated main line d* contains 2 main lines of type d₁₉, a single main line of type d_{23}^* , and 2 main lines of type d_{25}^* .
- Due to the **Selection Rule** (Theorem 6), the $G_3^2(K)$ are distributed on **even** branches only.
- It is **unknown** why there is no actual hit of the parents of vertices at depth 2 with invariant k = 1.