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Abstract.
For a given prime p, Leedham-Green, Newman, and Eick have defined the structure of a directed

graph G(p) on the set of all isomorphism classes of finite p-groups. Two vertices are connected by
an edge G → H if G is isomorphic to the last lower central quotient H/γc(H) where c = cl(H)
denotes the nilpotency class of H.
If the condition |H| = p|G| is imposed on the edges, G(p) is partitioned into countably many
disjoint subgraphs G(p, r), r ≥ 0, called coclass graphs of p-groups G of coclass r = cc(G) =
n− cl(G) where |G| = pn.
A coclass graph G(p, r) is a forest of finitely many coclass trees T (Gi) with roots Gi, each with
a single infinite main line having a pro-p-group of coclass r as its inverse limit, and additionally
contains finitely many sporadic groups outside of coclass trees: G(p, r) = (∪i T (Gi)) ∪ G0(p, r).

By Artin’s reciprocity law, the second p-class groups G2
p(K) = Gal(F2

p(K)|K) of algebraic

number fields K, where F2
p(K) denotes the second Hilbert p-class field of K, are vertices of the

metabelian skeleton of G(p).

Our aim is firstly to provide a general algorithm for determining the structure of G2
p(K) for

a given number field K by means of number theoretical invariants of the intermediate fields
K ≤ N ≤ F1

p(K) between K and its first Hilbert p-class field F1
p(K) and secondly to show that

the arithmetic of special types of base fields K gives rise to selection rules for G2
p(K), e.g.

• If p = 2 and K is complex quadratic of type (2, 2), there are no selection rules and G(2, 1)
is entirely populated by the G2

2(K), apart from the isolated group C4.
• If p = 3 and K is complex quadratic of type (3, 3) or real quadratic of type (3, 3) without

total principalization, then either G2
3(K) is sporadic or lies on an even branch B2k of a

coclass tree of an even coclass graph G(3, 2j).
• If p ≥ 3, K is quadratic of type (p, p), and G2

p(K) is of coclass 1, then K must be real

quadratic and G2
p(K) lies on an odd branch B2k+1 of the unique coclass tree T (Cp × Cp)

of G(p, 1).

Our aforementioned new algorithm is based on the family of transfers Vi : G/G′ → Ui/U
′
i from

a metabelian p-group G to all intermediate groups G′ ≤ Ui ≤ G. We prove that the main lines
of coclass trees, and all other coclass families arising from the periodicity of branches, share a
common transfer kernel type κ(G) = (ker(Vi)) and that κ(G) is determined by the transfer target
type τ(G) = (str(Ui/U

′
i)) where str(A) denotes the multiplet of type invariants of an abelian

p-group A. Consequently, the structure of G2
p(K) and the principalization type of a number

field K is determined by the structures of the p-class groups Clp(Ni) of all intermediate fields
K ≤ Ni ≤ F1

p(K), according to the Artin reciprocity law.

We have implemented this algorithm in PARI/GP to determine the structure of the second

3-class groups G2
3(K) = Gal(F2

3(K)|K) of the 4 596 quadratic number fields K = Q(
√
D) with

discriminant −106 < D < 107 and 3-class group Cl3(K) of type (3, 3) and to analyze their
distribution on the coclass graphs G(3, r), 1 ≤ r ≤ 6.
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Section 0.

Introduction and Notation
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Interaction:
Class Field Theory ←→ Group Theory

p ≥ 2 prime,
K algebraic number field with p-class rank rp(Clp(K)) ≥ 2.

Table 1. Second Hilbert p-class field F2
p(K) and second p-class group G = Gal(F2

p(K)|K)

F2
p(K) 1 = Gal(F2

p(K)|F2
p(K)) The head’s abelianizations

contain information on
F1
p(Ni) Galois U ′i = Gal(F2

p(K)|F1
p(Ni)) p-class groups

correspondence
F1
p(K) ←→ G′ = Gal(F2

p(K)|F1
p(K)) ' Clp(F

1
p(K))

Ni Ui = Gal(F2
p(K)|Ni) −→ Ui/U

′
i ' Gal(F1

p(Ni)|Ni) ' Clp(Ni)

K G = Gal(F2
p(K)|K) −→ G/G′ ' Gal(F1

p(K)|K) ' Clp(K)

(Ui)i family of all intermediate normal groups G′ ≤ Ui ≤ G, called the head of G,
(Ni)i family of all intermediate fields K ≤ Ni ≤ F1

p(K),

satisfying Ui = Gal(F2
p(K)|Ni) and Ui/G

′ ' NormNi|K(Clp(Ni)).

Principalization ←→ Transfer

Table 2. Family of class extensions jNi|K and transfers VG,Ui

jNi|K
Clp(K) −→ Clp(Ni)

Artin isomorphism l /// l Artin isomorphism
G/G′ −→ Ui/U

′
i

VG,Ui = Vi

Table 3. Corresponding invariants of K and its second p-class group G = G2
p(K)

p-Principalization Type of K Transfer Kernel Type (TKT) of G
κ(K) = (ker(jNi|K))i κ(G) = (ker(Vi))i

Total p-Principalization, for Ni 6= F1
p(K) Total Transfer, for Ui 6= G′

ν(K) = #{i | ker(jNi|K) = Clp(K)} ν(G) = #{i | ker(Vi) = G/G′}
p-Class Group Structure Type of K Transfer Target Type (TTT) of G

τ(K) = (str(Clp(Ni)))i τ(G) = (str(Ui/U
′
i))i

Exceptional p-rank, for Ni 6= F1
p(K) Exceptional p-rank, for Ui 6= G′

ε(K) = #{i | rp(Clp(Ni)) ≥ p} ε(G) = #{i | rp(Ui/U ′i) ≥ p}
p-Class Group Order Type of K Weak Transfer Target Type of G

τ0(K) = (ord(Clp(Ni)))i τ0(G) = (ord(Ui/U
′
i))i
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Terminology concerning Coclass Graphs G(p, r)

• Coclass cc(G) of a finite p-group G of order |G| = pn and
nilpotency class cl(G) is defined by n = cl(G) + cc(G).

• Vertex:
the isomorphism class of a finite p-group G of coclass cc(G) = r.

• H is Immediate Descendant of G,
if G is isomorphic to the last lower central quotient H/γc(H),
with nilpotency class c = cl(H) and γc(H) cyclic of order p.
Then G and H are connected by a directed edge G→ H.

• Capable Vertex: has at least one immediate descendant.
Terminal Vertex: has no immediate descendants.

• H is descendant of G,
if there is a path of directed edges from G to H.
In particular, H is descendant of itself, with empty path.

• Tree T (G) with root G: consists of all descendants of G.

• Coclass Tree:
maximal rooted tree containing exactly one infinite path.

• Main Line: the unique maximal infinite path of a coclass tree.

• Branch B(G) with root G on a main line: T (G) \ T (H),
H denoting the immediate descendant of G on the main line.

• Depth dp(H) of a vertex H on a branch B(G):
its distance from the root G on the main line.
Bd(G) denotes the branch of bounded depth d.

• Coclass Family F(H) of a vertex H ∈ Bd(Gn),
where Gn denotes the vertex of order pn on the main line
(n sufficiently large that periodicity has set in already):
the infinite sequence (Hi)i≥0 of vertices defined recursively by
H0 = H and Hi = ϕn+(i−1)`(Hi−1) for i ≥ 1 using the
periodicity isomorphisms of graphs ϕn : Bd(Gn)→ Bd(Gn+`)
with period length ` = p− 1.
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Summary of
Most Recent Fundamental Insights

• Coclass Theory is particularly well suited as a foundation
not only of p-Group Theory but also of Class Field Theory.
• A Coclass Family is arranged vertically on a Coclass Graph and has a

Parametrized Presentation for all members
(whereas an Isoclinism Family is arranged horizontally, intersects with infin-
itely many Coclass Graphs, and does not admit a uniform presentation).
• Members of a Coclass Family share a Common Transfer Kernel Type (TKT)

and can be viewed as Excited States T ↑n of a Ground State T. (There are,
however, Isoclinism Families all of whose members have different TKT.)
• New Top-Down Class Number Formulas for certain

Distinguished Fields N1, N2 reveal the Invariants of the Group G2
p(K).

• The Modern Top-Down Algorithm either determines the Group uniquely
or within a Finite Batch of closely related isoclinic groups
(whereas the Classical Bottom-Up Principalization Algorithm only
indicates the Infinite Coclass Family to which the Group G2

p(K) belongs).
• Total Principalization in the Distinguished Field N2 determines

Selection Rules for the Group G2
p(K) of Quadratic Base Fields K:

Parity of the Coclass Graph G(p, r) and of the Branch B(j).
• Vertices on Main Lines possess at least One Total Principalization κ(1) = 0.
• Miech’s Invariant k together with

Total Principalization in the Distinguished Field N1 determines the
Depth of the Group G2

p(K) on its Coclass Tree T .
• The recently discovered Connection between the TKT κ and the

Transfer Target Type (TTT) τ made it possible to
Extend the Computation of G2

3(K) to incredible 2020 complex and 2576 real

Quadratic Fields K = Q(
√
D) with discriminants −106 < D < 107

by means of the Top-Down Algorithm.
(The previous state of the art was that
Heider and Schmithals computed κ, but not G2

3(K),
for 13 complex and 5 real K within −2 · 104 < D < 105

using the Bottom-Up Algorithm.)
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Section 1.

p-Groups G of Coclass cc(G) = 1

(p ≥ 2 prime)
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Asymmetry of the Head of
Metabelian p-Groups of Coclass 1

Wiman Blackburn Lemma. p ≥ 2 prime, G ∈ G(p, 1) =⇒
1. The abelianization G/G′ is of diamond type (p, p),
2. The 2-step centralizer χ2(G) of γ2(G) = G′ with the property

[χ2(G), γ2(G)] ≤ γ4(G)

is strictly bigger than γ2(G), provided that |G| ≥ p4,
and causes a polarization of the diamond head:
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Parametrized Presentations for
Metabelian p-Groups of Coclass 1

Representatives for the vertices of G(p, 1) are the groups

G = Gn
a(z, w) = 〈x, y〉

with 2 generators which satisfy the Blackburn Miech Relations

xp = swn−1, yp
p∏
`=2

s
(p
`)
` = szn−1, [y, s2] =

k∏
r=1

s
a(n−r)
n−r , |G| = pn,

where s2 = [y, x] ∈ γ2(G) and si = [si−1, x] ∈ γi(G) for i ≥ 3, and

x ∈ G \ χ2(G), if n ≥ 4, y ∈ χ2(G) \ γ2(G).

Miech’s invariant 0 ≤ k ≤ min(n− 4, p− 2) is defined by

[χ2(G), γ2(G)] = γn−k(G)

and provides a measure for the deviation from the maximal degree of
commutativity.
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The Coclass Graph G(2, 1)

Burnside Gorenstein Theorem.
1. G/G′ ' (2, 2) =⇒ G ∈ G(2, 1).
2. G ∈ G(2, 1) =⇒ G metabelian.

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256
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C2 × C2C4

Q(8)

Gn
0 (0, 0)Gn

0 (0, 1)Gn
0 (1, 0)

= D(2n)= Q(2n)= SD(2n)

TKT: d.8Q.6S.4

(032)(132)(232)

TKT: Q.5

(123)

TKT: a.1

(000)

Main line: (C2 × C2, (D(2n))n≥3).
3 coclass families: (D(2n))n≥3, (Q(2n))n≥4, (SD(2n))n≥4, with invariant k = 0.
Sporadic groups: C4, C2 × C2 = V4, Q(8).
Periodicity of branches: B1(D(2n)) ' B1(D(2n+1)) for n ≥ 3.
Maximal depth: d = 1.
Period length: ` = 1.
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The Coclass Graph G(3, 1)

Wiman Blackburn Theorem.
G ∈ G(3, 1) =⇒ G metabelian.
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C3 × C3C9

G3
0(0, 1)

Syl3(A9)

Gn
0 (0, 0)Gn

0 (0, 1)Gn
0 (1, 0)Gn

0 (−1, 0) Gn
1 (0,−1) Gn

1 (0, 0) Gn
1 (0, 1)

TKT: a.1a.2a.3a.3 a.1 a.1 a.1
(0000)(1000)(2000)(2000) (0000) (0000) (0000)

TKT: A.1
(1111)

TKT: a.1
(0000)

Main line: (C3 × C3, (G
n
0 (0, 0))n≥3).

13 coclass families: one for even n only,
(Gn0 (−1, 0))n≥4, with k = 0,
and the others for n either even or odd,
(Gn0 (0, 0))n≥3, (Gn0 (0, 1))n≥4, (Gn0 (1, 0))n≥5, with invariant k = 0,
(Gn1 (0, 0))n≥5, (Gn1 (0, 1))n≥5, (Gn1 (0,−1))n≥5, with k = 1.

Sporadic groups: C9, C3 × C3, G
3
0(0, 1), G4

0(1, 0) ' Syl3(A9).
Periodicity of branches: B1(Gn0 (0, 0)) ' B1(Gn+2

0 (0, 0)) for n ≥ 4.
Maximal depth: d = 1.
Period length: ` = 2.
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Coclass Families Share a Common
Transfer Kernel Type (TKT)

Theorem 1. Transfer Kernel Type κ(G) for cc(G) = 1, p ≥ 3

Table 4. κ(G) in dependence on G ∈ G(p, 1) for p ≥ 3

p-Group Gn
a(z, w) of Coclass 1︷ ︸︸ ︷

TKT κ ν G cl(G) n a z w dp(G) tree position

a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1 Cp × Cp 1 2 0 root

A.1 (

p+1 times︷ ︸︸ ︷
1 . . . 1 ) 0 G3

0(0, 1) 2 3 0 0 1 1 sporadic

a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1 Gn

0 (0, 0) ≥ 2 ≥ 3 0 0 0 0 main line

a.2 (1

p times︷ ︸︸ ︷
0 . . . 0) p Gn

0 (0, 1) ≥ 3 ≥ 4 0 0 1 1 cc-families

a.3 (2

p times︷ ︸︸ ︷
0 . . . 0) p Gn

0 (z, 0) ≥ 3 ≥ 4 0 6= 0 0 1 cc-families

a.1 (

p+1 times︷ ︸︸ ︷
0 . . . 0 ) p+ 1 Gn

a(z, w) ≥ 4 ≥ 5 6= 0 ≥ 1 cc-families

Proof: D. C. Mayer, April 2010, see [1] Transfers of metabelian p-groups, Thm.2.6.

Theorem 2. Transfer Kernel Type κ(G) for cc(G) = 1, p = 2

Table 5. κ(G) in dependence on G ∈ G(2, 1)

2-Group Gn
a(z, w) of Coclass 1︷ ︸︸ ︷

TKT κ ν G cl(G) n a z w dp(G) tree position
a.1 (000) 3 C2 × C2 1 2 0 root
Q.5 (123) 0 Q(8) 2 3 0 0 1 1 sporadic
d.8 (032) 1 D(2n) ≥ 2 ≥ 3 0 0 0 0 main line
Q.6 (132) 0 Q(2n) ≥ 3 ≥ 4 0 0 1 1 coclass family
S.4 (232) 0 SD(2n) ≥ 3 ≥ 4 0 1 0 1 coclass family

Proof: D. C. Mayer, October 2009, see [1] Transfers of metabelian p-groups, Thm.2.5.
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Branch and Depth on the Coclass Tree T (Cp × Cp)
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Top Down

F2
p(K)

F1
p(K)

p

Ni

p

K

Theorem 3. The Weak TTT τ0 for p ≥ 2, cc(G) = 1 is given by

hp(F
1
p(K)) = pcl(G)−1,

hp(N1) = pcl(G)−k,

hp(Ni) = p2 for 2 ≤ i ≤ p+ 1.

Whereas hp(N2), . . . , hp(Np+1) only indicate that cc(G) = 1,
hp(F

1
p(K)) determines the order pn, n = cl(G) + 1, and class of G,

and the distinguished hp(N1) gives the invariant k of G.

The Branch Root Order of G is given by cl(G) + 1− dp(G),

where the Depth of G is dp(G) =

{
k, if κ(1) = 0,

k + 1, if κ(1) 6= 0.

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Thm.3.2.
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Selection Rules for K = Q(
√
D), p ≥ 3, cc(G) = 1
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Bottom Up

Li = Q(ϑ)

p

Q

2

2

Ni = K(ϑ)

p

K = Q(
√
D)

Theorem 4. If G ∈ G(p, 1), then K must be real quadratic, D > 0,
and
the p-class numbers of the non-Galois subfields Li of Ni are given by

hp(L1) = p
cl(G)−dp(G)

2 ,

hp(Li) = p for 2 ≤ i ≤ p+ 1.

Whereas hp(L2), . . . , hp(Lp+1) do not give any information,
the distinguished hp(L1) enforces cl(G)− dp(G) ≡ 0 (mod 2).

The Branch Root Order of G is odd,

cl(G) + 1− dp(G) ≡ 1 (mod 2).

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Thm.4.1.
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Population of the Coclass Graph G(2, 1)
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C2 × C2 = V4C4

Q(8)

Gn
0 (0, 0)Gn

0 (0, 1)Gn
0 (1, 0)

= D(2n)= Q(2n)= SD(2n)

TKT: d.8Q.6S.4

(032)(132)(232)

TKT: Q.5

(123)

TKT: a.1

(000)D = −84

D = −408

D = −6 168

D = −29 208

D = −609 816

D = −670 872

D = −120

D = −312

D = −888

D = −3 768

D = −8 952

D = −40 632

D = −340

D = −2 260

D = −5 140

D = −17 140

D = −165 460

• The numerical results suggest the conjecture that the tree T (V4) is covered entirely

by second 2-class groups G2
2(K) of complex quadratic fields K = Q(

√
D), D < 0.
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Figure 1. TKTs and selection rule for G2
5(K), K = Q(

√
D), D > 0, on the

metabelian skeleton of G(5, 1), where bigger values of 0 ≤ k ≤ 3 occur.
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Section 2.

3-Groups G of Coclass cc(G) = r

(r ≥ 2)
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Parametrized Presentations for
Metabelian 3-Groups of Coclass at least 2

with Abelianization of type (3, 3)

Nebelung’s Lemma. G ∈ G(3, r), r ≥ 2 =⇒
The smallest integer s ≥ 2 such that the 2-step centralizer χs(G) of γs(G) with the
property

[χs(G), γs(G)] ≤ γs+2(G)

is strictly bigger than γ2(G) = G′ satisfies the inequalities

3 ≤ r + 1 ≤ s ≤ r + 2.

Representatives for the vertices of G(3, r), r ≥ 2, are the groups

G = Gm,nρ (α, β, γ, δ) = 〈x, y〉
with 2 generators x, y which satisfy the Nebelung Relations

s32 = σ4σ
−ρβ
m−1τ

−1
4 , s3σ3σ4 = σρβm−2σ

γ
m−1τ

δ
e , t−13 τ3τ4 = σρδm−2σ

α
m−1τ

β
e , τe+1 = σ−ρm−1,

cl(G) = m− 1, |G| = 3n, e = n−m+ 2 = cc(G) + 1, where

s2 = t2 = [y, x] ∈ γ2(G), si = [si−1, x], ti = [ti−1, y] ∈ γi(G) for i ≥ 3,

σ3 = y3, τ3 = x3 ∈ γ3(G), σi = [σi−1, x], τi = [τi−1, y] ∈ γi(G) for i ≥ 4,

and γ3(G)/γ4(G) = 〈y3, x3〉, x ∈ G \ χs(G), if e < m− 1, y ∈ χs(G) \G′.

Asymmetry of the Head of
Metabelian 3-Groups of Coclass at least 2

The choice of y, x causes a bipolarization of the diamond head:

u
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u u u u
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G

χs(G) = U1 = 〈y,G′〉

�
�

�
�U2 = 〈x,G′〉

�
�
�
�U3 = 〈xy,G′〉 U4 = 〈xy−1, G′〉

G′

Miech’s invariant 0 ≤ k ≤ 1 is defined by

[χs(G), γe(G)] = γm−k(G).
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Top of Coclass Graph G(3, 2) restricted to
Groups with Abelianization of Type (3, 3)

32 = 9

33 = 27

34 = 81

35 = 243

36 = 729

37 = 2187

38 = 6561
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0(0, 0)

Y Z W0 K0 B0 Q0 U0

W X K

4

N

4

L M 2 C A I H
B

D 2 O
Q

P R S
U

T V

TKT: D.10 D.5

(2241) (4224)

TKT: G.19 H.4

(4321) (4443)

T (C3 × C3) ⊂ G(3, 1) T (B) T (Q0) T (U0)

3 roots of coclass trees with metabelian main lines:
B = G5,6

0 (0, 0, 0, 0), Q0 = G4,5
0 (0,−1, 0, 1), U0 = G4,5

0 (0, 0, 0, 1).
Isolated and sporadic groups:
Y = G4,5

0 (0, 0,−1, 1), Z = G4,5
0 (1, 1,−1, 1); W0 = G4,5

0 (−1, 0, 0, 1), K0 = G4,5
0 (1, 1, 1, 1).
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The Coclass Tree T (U0) ⊂ G(3, 2)

Structure Theorem.
G ∈ T (U0) =⇒ ε(G) = 0.
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3

3
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2

2

2

TKT: E.9 E.8 c.21 G.16 G.16 G.16

(2231)(1231)(0231) (4231) (4231)(4231)

Main line: (Gn−1,n
0 (0, 0, 0, 1))n≥5, where U0 = G4,5

0 (0, 0, 0, 1), U = G5,6
0 (0, 0, 0, 1).

10 coclass families: metabelian with invariant k = 0: two for odd n only,

(Gn−1,n
0 (0, 0,−1, 1))n≥7, (Gn−1,n

0 (−1, 0, 0, 1))n≥7,

and the others for n either even or odd, (Gn−1,n
0 (0, 0, 0, 1))n≥5,

(Gn−1,n
0 (1, 0,−1, 1))n≥6, (Gn−1,n

0 (0, 0, 1, 1))n≥6, (Gn−1,n
0 (1, 0, 0, 1))n≥6,

where T = G5,6
0 (1, 0,−1, 1), V = G5,6

0 (0, 0, 1, 1), S = G5,6
0 (1, 0, 0, 1).

Periodicity of branches: B3(Gn−1,n
0 (0, 0, 0, 1)) ' B3(Gn+1,n+2

0 (0, 0, 0, 1)) for n ≥ 7.
Maximal depth: d = 3.
Period length: ` = 2.
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The Coclass Tree T (Q0) ⊂ G(3, 2)

Structure Theorem.
G ∈ T (Q0) =⇒ ε(G) = 1.
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TKT: E.14 E.6 c.18 H.4 H.4 H.4

(2313)(1313)(0313) (3313) (3313)(3313)

Main line: (Gn−1,n
0 (0,−1, 0, 1))n≥5, where Q0 = G4,5

0 (0,−1, 0, 1), Q = G5,6
0 (0,−1, 0, 1).

10 coclass families: metabelian with invariant k = 0: two for odd n only,

(Gn−1,n
0 (0,−1,−1, 1))n≥7, (Gn−1,n

0 (−1,−1, 1, 1))n≥7,

and the others for n either even or odd, (Gn−1,n
0 (0,−1, 0, 1))n≥5,

(Gn−1,n
0 (1,−1, 1, 1))n≥6, (Gn−1,n

0 (0,−1, 1, 1))n≥6, (Gn−1,n
0 (1,−1,−1, 1))n≥6,

where P = G5,6
0 (1,−1, 1, 1), R = G5,6

0 (0,−1, 1, 1), O = G5,6
0 (1,−1,−1, 1).

Periodicity of branches: B3(Gn−1,n
0 (0,−1, 0, 1)) ' B3(Gn+1,n+2

0 (0,−1, 0, 1)) for n ≥ 7.
Maximal depth: d = 3.
Period length: ` = 2.
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The Coclass Tree T (B) ⊂ T (B0) ⊂ G(3, 2)

Structure Theorem.
G ∈ T (B0) =⇒ ε(G) = 2.

Selection Rule.
K = Q(

√
D) =⇒ G2

3(K) /∈ T (B0).
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B

2 4

3 2
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2

6

12
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8

TKT: d.23 d.25 d.19 b.10 b.10 b.10

(1043)(2043)(4043)(0043) (0043)(0043)

Main line: (Gn−1,n
0 (0, 0, 0, 0))n≥5, where B0 = G4,5

0 (0, 0, 0, 0), B = G5,6
0 (0, 0, 0, 0).

10 coclass families: metabelian with invariant k = 0: two for odd n only,

(Gn−1,n
0 (0, 0,−1, 0))n≥7, (Gn−1,n

0 (1, 0,−1, 0))n≥7,

and the others for n either even or odd, (Gn−1,n
0 (0, 0, 0, 0))n≥5,

(Gn−1,n
0 (1, 0, 0, 0))n≥6, (Gn−1,n

0 (0, 0, 1, 0))n≥6, (Gn−1,n
0 (1, 0, 1, 0))n≥6,

where D = G5,6
0 (1, 0, 0, 0), G = G5,6

0 (0, 0, 1, 0), J = G5,6
0 (1, 0, 1, 0).

Periodicity of branches: B2(Gn−1,n
0 (0, 0, 0, 0)) ' B2(Gn+1,n+2

0 (0, 0, 0, 0)) for n ≥ 7.
Maximal depth: d = 2.
Period length: ` = 2.
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Branch and Depth on a Coclass Tree

u

u

u

u

?

?

Top Down

F2
3(K)

F1
3(K)

3

Ni

3

K

Theorem 5. The Weak TTT τ0 for p = 3, cc(G) ≥ 2 is given by

h3(F
1
3(K)) = 3cl(G)+cc(G)−2,

h3(N1) = 3cl(G)−k,

h3(N2) = 3cc(G)+1,

h3(Ni) = 33 for 3 ≤ i ≤ 4.

Whereas h3(N3) and h3(N4) only indicate that cc(G) ≥ 2,
the distinguished h3(N2) gives the precise coclass of G,
h3(F

1
3(K)) determines the order 3n, n = cl(G) + cc(G), and class of G,

and finally the distinguished h3(N1) yields the invariant k of G.

The Branch Root Order of G is given by cl(G) + cc(G)− dp(G),

where the Depth of non-sporadic G is dp(G) =

{
k, if κ(1) = 0,

k + 1, if κ(1) 6= 0.

Proof: D. C. Mayer, May 2003, see [2] The second p-class group of a number field, Thm.3.4.
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Selection Rules for K = Q(
√
D), p = 3, cc(G) ≥ 2
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Bottom Up

Li = Q(ϑ)

3

Q

2

2

Ni = K(ϑ)

3

K = Q(
√
D)

Theorem 6. The 3-class numbers of the non-Galois subfields Li of Ni are given by

h3(L1) =

{
3

cl(G)−(k+1)
2 , for sporadic G,

3
cl(G)−dp(G)

2 , otherwise,

h3(L2) =

{
3

cc(G)+1
2 , if κ(2) = 0,

3
cc(G)

2 , if κ(2) 6= 0,

h3(Li) = 3 for 3 ≤ i ≤ 4.

Whereas h3(L3) and h3(L4) do not give any information,
the distinguished h3(L2) indicates the coclass of G and enforces

cc(G) ≡

{
1 (mod 2), if κ(2) = 0,

0 (mod 2), if κ(2) 6= 0,

and the distinguished h3(L1) demands cl(G)− dp(G) ≡ 0 (mod 2).

The Branch Root Order of non-sporadic G is given by

cl(G) + cc(G)− dp(G) ≡

{
1 (mod 2), if κ(2) = 0,

0 (mod 2), if κ(2) 6= 0.

Proof: D. C. Mayer, October 2005, see [2] The second p-class group of a number field, Thm.4.2.
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The TTT τ determines the TKT κ
of densely populated sporadic groups

Theorem 7. Structures of Transfer Targets for cc(G) = 2, cl(G) = 3

Table 6. κ in dependence on τ for p = 3, n = 5, k = 0 (Isoclinism family Φ6)

Transfer Target Type τ︷ ︸︸ ︷
TKT κ ν Cl3(F

1
3(K)) Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε

b.10 (0043) 2 (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

c.21 (0231) 1 (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

c.18 (0313) 1 (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

D.10 (2241) 0 (3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (9, 3) 1

G.19 (2143) 0 (3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

H.4 (4443) 0 (3, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

D.5 (4224) 0 (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) (9, 3) 2

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.4.

Theorem 8. Structures of Transfer Targets for cc(G) = 2, cl(G) = 4

Table 7. κ in dependence on τ for p = 3, n = 6, k = 1 (Isoclinism families Φ40, . . . ,Φ43)

Transfer Target Type τ︷ ︸︸ ︷
TKT κ ν Cl3(F

1
3(K)) Cl3(N1) Cl3(N2) Cl3(N3) Cl3(N4) ε

b.10 (0043) 2 (9, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

H.4 (4443) 0 (9, 3, 3) (3, 3, 3) (3, 3, 3) (9, 3) (3, 3, 3) 3

G.19 (2143) 0 (3, 3, 3, 3) (9, 3) (9, 3) (9, 3) (9, 3) 0

b.10 (0043) 2 (3, 3, 3, 3) (9, 3) (9, 3) (3, 3, 3) (3, 3, 3) 2

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.5.
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For p = 2, however, κ is not determined by τ .

Theorem 9. Structures of Transfer Targets for p = 2, cc(G) = 1

Table 8. Different TKT’s κ sharing the same TTT τ , for each n ≥ 4

Transfer Target Type τ︷ ︸︸ ︷
TKT κ ν Cl2(F

1
2(K)) Cl3(N1) Cl3(N2) Cl3(N3) ε

a.1 (000) 3 1 (2) (2) (2) 0
Q.5 (123) 0 (2) (4) (4) (4) 0
d.8 (032) 1 (2n−2) (2n−1) (2, 2) (2, 2) 2
Q.6 (132) 0 (2n−2) (2n−1) (2, 2) (2, 2) 2
S.4 (232) 0 (2n−2) (2n−1) (2, 2) (2, 2) 2

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Sec.9.
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Section 3.

Second 3-Class Groups G2
3(K)

of Quadratic Fields K = Q(
√
D)
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Methods for Determining the Group G2
3(K)

The following table shows the fineness of resolution, i.e. the accuracy, in determining the position
of G2

3(K) on the coclass graphs G(3, r), obtained by Scholz and Taussky’s Classical Bottom-Up
Algorithm, by our Recent Top-Down Algorithm, and by a combination of both algorithms, for
each transfer kernel type (TKT) κ. By a family we understand an infinite coclass family and by
an m-batch we understand a multiplet of m ≥ 2 immediate descendants of a common parent.

Table 9. Comparison of the Bottom-Up and Top-Down Algorithm

Algorithm︷ ︸︸ ︷
TKT Bottom-Up Combined Top-Down
a.1 3 families 3-batch 3-batch
a.2 family vertex 3-batch with a.3
a.3* 2 families with a.3 vertex vertex
a.3 2 families with a.3* vertex 2-batch with a.2
a.3↑ 2 families 2-batch 3-batch with a.2
b.10 infinitely many families 6- or 9-batch 6- or 9-batch
c.18 main line vertex vertex
c.21 main line vertex vertex

d*.19 infinitely many main lines 2 vertices on different trees 5 vertices on different trees
d*.23 infinitely many main lines vertex 5 vertices on different trees
d*.25 infinitely many main lines 2 vertices on different trees 5 vertices on different trees
d.19 infinitely many families 2-batch 5-batch with d.23,25
d.23 infinitely many families vertex 5-batch with d.19,25
d.25 infinitely many families 2-batch 5-batch with d.19,23
A.1 impossible impossible impossible
D.5 vertex vertex vertex
D.10 vertex vertex vertex
G.19 infinitely many families 2-batch 2-batch
H.4 infinitely many families 4-batch 4-batch
E.6 family vertex 3-batch with E.14
E.14 2 families 2-batch 3-batch with E.6
E.8 family vertex 3-batch with E.9
E.9 2 families 2-batch 3-batch with E.8

G.16 infinitely many families two 4-batches two 4-batches
H.4↑ infinitely many families two 4-batches two 4-batches
F.7 infinitely many families 3-batch 13-batch with F.11,12,13
F.11 infinitely many families 2-batch 13-batch with F.7,12,13
F.12 infinitely many families 4-batch 13-batch with F.7,11,13
F.13 infinitely many families 4-batch 13-batch with F.7,11,12
G.16r infinitely many families 4-batch 18 vertices with G.19r,H.4r
G.19r infinitely many families two 3-batches 18 vertices with G.16r,H.4r
H.4r infinitely many families two 4-batches 18 vertices with G.16r,G.19r
G.16i infinitely many families 3-batch 12 vertices with G.19i,H.4i
G.19i infinitely many families 4-batch 12 vertices with G.16i,H.4i
H.4i infinitely many families 5-batch 12 vertices with G.16i,G.19i
F.7↑ infinitely many families 4 vertices on different trees 24 vertices on different trees
F.11↑ infinitely many families 4 vertices on different trees 24 vertices on different trees
F.12↑ infinitely many families 8 vertices on different trees 24 vertices on different trees
F.13↑ infinitely many families 8 vertices on different trees 24 vertices on different trees
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Distribution on the Coclass Graph G(3, 1)
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Syl3(A9)

Gn
0 (0, 0)Gn

0 (0, 1)Gn
0 (1, 0)Gn

0 (−1, 0) Gn
1 (0,−1) Gn

1 (0, 0) Gn
1 (0, 1)

TKT: a.1a.2a.3a.3 a.1 a.1 a.1

(0000)(1000)(2000)(2000) (0000) (0000) (0000)

TKT: A.1

(1111)

TKT: a.1
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�

2083

697

72 147

1

• G2
3(K) ∈ G(3, 1) for 2303 (89.4%) of the 2576 discriminants 0 < D < 107.

• Since the Transfer Kernel Types κ of all coclass families are total with ν ≥ 3,
there occur G2

3(K) of real quadratic fields K = Q(
√
D), D > 0 only.

• Due to the Selection Rule (Theorem 4), the G2
3(K) are distributed on odd

branches only. This is a restriction from 13 to 7 coclass families:
the main line (Gn0 (0, 0))n≥3 for odd n, and the others for even n,
(Gn0 (0, 1))n≥4, (Gn0 (1, 0))n≥4, (Gn0 (−1, 0))n≥4, with invariant k = 0,
(Gn1 (0, 0))n≥6, (Gn1 (0, 1))n≥6, (Gn1 (0,−1))n≥6, with k = 1.
Only one of these groups is intrinsically sporadic: G4

0(1, 0) ' Syl3(A9).
• Open Problem: It is unknown why there is no actual hit of the main line.
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Distribution among Sporadic Groups of G(3, 2)

32 = 9

33 = 27

34 = 81

35 = 243

36 = 729

37 = 2187

38 = 6561
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Y Z W0 K0 B0 Q0 U0

W X K

4

N

4

L M 2 C A I H
B

D 2 O
Q

P R S
U

T V

TKT: D.10 D.5

(2241) (4224)

TKT: G.19 H.4

(2143) (4443)

T (C3 × C3) ⊂ G(3, 1) T (B) T (Q0) T (U0)

�
�
�
�
�
�
�
�

667/93 269/47

�
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�
�94/11

�
�
�
�297/27

• G2
3(K) ∈ G0(3, 2) for 1327 (65.7%) of the 2020 discriminants −106 < D < 0.

• G2
3(K) ∈ G0(3, 2) for 178 (6.9%) of the 2576 discriminants 0 < D < 107.

• Isolated and sporadic groups:
Y = G4,5

0 (0, 0,−1, 1), Z = G4,5
0 (1, 1,−1, 1); W0 = G4,5

0 (−1, 0, 0, 1), K0 = G4,5
0 (1, 1, 1, 1).

• It is unknown why there is no actual hit of the vertices W0 and K0.
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Distribution on the Coclass 2 Tree T (U0)
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TKT: E.9 E.8 c.21 G.16 G.16 G.16

(2231)(1231)(0231) (4231) (4231)(4231)
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• G2
3(K) ∈ T (U0) for 291 (14.4%) of the 2020 discriminants −106 < D < 0.

• G2
3(K) ∈ T (U0) for 43 (1.7%) of the 2576 discriminants 0 < D < 107.

• Since the Transfer Kernel Type κ = (0231) of the main line (c.21) is total with

κ(1) = 0, there only occur G2
3(K) of real quadratic fields K = Q(

√
D), D > 0

on the main line.
• Due to the Selection Rule (Theorem 6), the G2

3(K) are distributed on even
branches only. This is a restriction from 10 to 6 metabelian coclass families with
invariant k = 0: the main line (Gn−1,n0 (0, 0, 0, 1))n≥6 for even n, and the others

for odd n, (Gn−1,n0 (0, 0,−1, 1))n≥7, (Gn−1,n0 (0, 0, 1, 1))n≥7, (Gn−1,n0 (1, 0,−1, 1))n≥7,

(Gn−1,n0 (−1, 0, 0, 1))n≥7, (Gn−1,n0 (1, 0, 0, 1))n≥7.

• It is unknown why there is no actual hit of the vertices (Gn−1,n0 (±1, 0, 0, 1))n≥7.
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Distribution on the Coclass 2 Tree T (Q0)
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• G2
3(K) ∈ T (Q0) for 270 (13.4%) of the 2020 discriminants −106 < D < 0.

• G2
3(K) ∈ T (Q0) for 39 (1.5%) of the 2576 discriminants 0 < D < 107.

• Since the Transfer Kernel Type κ = (0313) of the main line (c.18) is total with

κ(1) = 0, there only occur G2
3(K) of real quadratic fields K = Q(

√
D), D > 0

on the main line.
• Due to the Selection Rule (Theorem 6), the G2

3(K) are distributed on even
branches only. This is a restriction from 10 to 6 metabelian coclass families with
invariant k = 0: the main line (Gn−1,n0 (0,−1, 0, 1))n≥6 for even n, and the others for

odd n, (Gn−1,n0 (0,−1,−1, 1))n≥7, (Gn−1,n0 (0,−1, 1, 1))n≥7, (Gn−1,n0 (1,−1, 1, 1))n≥7,

(Gn−1,n0 (−1,−1, 1, 1))n≥7, (Gn−1,n0 (1,−1,−1, 1))n≥7.

• It is unknown why there is no actual hit of the vertices (Gn−1,n0 (±1,−1,∓1, 1))n≥7.
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Metabelian Skeleton of Coclass Tree
T (b3

10) ⊂ G(3, 3)

Structure Theorem.
G ∈ G(3, 3) =⇒ ε(G) = 2.

Selection Rule.
K = Q(

√
D), G2

3(K) ∈ G(3, 3) =⇒ D > 0, G2
3(K) ∈ T (b310).
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b310

62

2

2

2

2

2

6

6

6

9

9

TKT: d.23 d.25 d.19 b.10 b.10

(1043) (2043) (4043) (0043) (0043)

Main line: (Gn−2,n
0 (0, 0, 0, 0))n≥7, with root b310 = G5,7

0 (0, 0, 0, 0).
10 coclass families: metabelian with invariant k = 0: two for even n only,

(Gn−2,n
0 (0, 0,−1, 0))n≥8, (Gn−2,n

0 (1, 0,−1, 0))n≥8,

and the others for n either even or odd, (Gn−1,n
0 (0, 0, 0, 0))n≥7,

(Gn−2,n
0 (1, 0, 0, 0))n≥8, (Gn−2,n

0 (0, 0, 1, 0))n≥8, (Gn−2,n
0 (1, 0, 1, 0))n≥8.

Periodicity of branches: B1(Gn−2,n
0 (0, 0, 0, 0)) ' B1(Gn,n+2

0 (0, 0, 0, 0)) for n ≥ 8.
Maximal depth: d = 1 (restricted to the metabelian skeleton).
Period length: ` = 2.
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Distribution on the Coclass 3 Tree T (b3
10)
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TKT: d.23 d.25 d.19 b.10 b.10

(1043)(2043)(4043)(0043) (0043)
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�1 1 8

• G2
3(K) ∈ G(3, 3) for 10 (0.4%) of the 2576 discriminants 0 < D < 107.

• Since the Transfer Kernel Types κ of all coclass families are total with κ(2) = 0,

there occur G2
3(K) of real quadratic fields K = Q(

√
D), D > 0 only.

• Due to the Selection Rule (Theorem 6), the G2
3(K) are distributed on odd

branches only.
• It is unknown why there is no actual hit of the main line (Gn−2,n0 (0, 0, 0, 0))n≥7.
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Top of Coclass Graph G(3, 4) restricted to
Groups with Abelianization of Type (3, 3)

35 = 243

37 = 2187

38 = 6561

39 = 19683

310 = 59049

311 = 177147

312 = 531441
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between G(3, 2) and G(3, 3)
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B0 ∈ G(3, 2)

b310

3 2 4 4

r

2 2

4 3 4

i

3 4 5

2 d∗19 d∗23 2 d∗25 b410

TKT: F.7 F.11 F.12 F.13

(3443) (1143) (1343) (3143)

TKT: G.16 G.19 H.4

(1243) (2143) (3343)

T (b310) ⊂ G(3, 3) T (d∗19) T (d∗23) T (d∗25) T (b410)

6 roots of coclass trees with metabelian main lines:
b410 = G6,9

0 (0, 0, 0, 0), d∗19 = G6,9
0 (0, 1, 0, 1), d∗19(−) = G6,9

0 (0,−1, 0, 1),

d∗23 = G6,9
0 (0, 0, 0, 1), d∗25 = G6,9

0 (0, 1, 0, 0), d∗25(−) = G6,9
0 (0,−1, 0, 0).

51 isolated and sporadic groups.
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Distribution among Sporadic Groups of G(3, 4)

35 = 243

37 = 2187

38 = 6561

39 = 19683

310 = 59049

311 = 177147

312 = 531441
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TKT: F.7 F.11 F.12 F.13

(3443) (1143) (1343) (3143)

TKT: G.16 G.19 H.4

(1243) (2143) (3343)

T (b310) ⊂ G(3, 3) T (d∗19) T (d∗23) T (d∗25) T (b410)
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�19/0
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�15/0

• G2
3(K) ∈ G0(3, 4) for 112 (5.5%) of the 2020 discriminants −106 < D < 0.

• G2
3(K) ∈ G0(3, 4) for 1 of the 2576 discriminants 0 < D < 107.

• It is unknown why there is no actual hit of the roots of the sporadic trees.
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Metabelian Skeleton of Coclass Tree
T (d∗19) ⊂ G(3, 4)

Structure Theorem.
G ∈ G(3, 4) =⇒ ε(G) = 2.
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2

5

5

9
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TKT: F.7 F.12 F.13 d∗.19 H.4 H.4

(3443) (1343) (3143) (0443) (3343) (3343)

Main line: (Gn−3,n
0 (0, 1, 0, 1))n≥9, with root d∗19 = G6,9

0 (0, 1, 0, 1).
14 coclass families: metabelian with invariant k = 0: four for odd n only,

(Gn−3,n
0 (−1, 1, 1, 1))n≥11, (Gn−3,n

0 (−1, 1, 0, 1))n≥11, (Gn−3,n
0 (0, 1,−1, 1))n≥11,

(Gn−3,n
0 (−1, 1,−1, 1))n≥11,

and the others for n either even or odd, (Gn−3,n
0 (0, 1, 0, 1))n≥9,

(Gn−3,n
0 (1, 1,−1, 1))n≥10, (Gn−3,n

0 (1, 1, 0, 1))n≥10, (Gn−3,n
0 (0, 1, 1, 1))n≥10,

(Gn−3,n
0 (1, 1, 1, 1))n≥10.

Periodicity of branches: B2(Gn−3,n
0 (0, 1, 0, 1)) ' B2(Gn−1,n+2

0 (0, 1, 0, 1)) for n ≥ 9.
Maximal depth: d = 2 (restricted to the metabelian skeleton).
Period length: ` = 2.
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Metabelian Skeleton of Coclass Tree
T (d∗23) ⊂ G(3, 4)

Structure Theorem.
G ∈ G(3, 4) =⇒ ε(G) = 2.
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d∗23
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2

2

4

4

4

2

2

2

5

5

9
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9

TKT: F.11 F.12 d∗.23 G.16 G.16

(1143) (1343) (0243) (1243) (1243)

Main line: (Gn−3,n
0 (0, 0, 0, 1))n≥9, with root d∗23 = G6,9

0 (0, 0, 0, 1).
14 coclass families: metabelian with invariant k = 0: four for odd n only,

(Gn−3,n
0 (0, 0,−1, 1))n≥11, (Gn−3,n

0 (−1, 0, 1, 1))n≥11, (Gn−3,n
0 (−1, 0,−1, 1))n≥11,

(Gn−3,n
0 (−1, 0, 0, 1))n≥11,

and the others for n either even or odd, (Gn−3,n
0 (0, 0, 0, 1))n≥9,

(Gn−3,n
0 (0, 0, 1, 1))n≥10, (Gn−3,n

0 (1, 0, 1, 1))n≥10, (Gn−3,n
0 (1, 0,−1, 1))n≥10,

(Gn−3,n
0 (1, 0, 0, 1))n≥10.

Periodicity of branches: B2(Gn−3,n
0 (0, 0, 0, 1)) ' B2(Gn−1,n+2

0 (0, 0, 0, 1)) for n ≥ 9.
Maximal depth: d = 2 (restricted to the metabelian skeleton).
Period length: ` = 2.
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Metabelian Skeleton of Coclass Tree
T (d∗25) ⊂ G(3, 4)

Structure Theorem.
G ∈ G(3, 4) =⇒ ε(G) = 2.
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d∗25

2

2

2

2

2

2

4

4

6

6

6

TKT: F.13 F.11 d∗.25 G.19 G.19

(3143) (1143) (0143) (2143) (2143)

Main line: (Gn−3,n
0 (0, 1, 0, 0))n≥9, with root d∗25 = G6,9

0 (0, 1, 0, 0).
10 coclass families: metabelian with invariant k = 0: two for odd n only,

(Gn−3,n
0 (1, 1,−1, 0))n≥11, (G

n−3,n
0 (0, 1,−1, 0))n≥11,

and the others for n either even or odd, (Gn−3,n
0 (0, 1, 0, 0))n≥9,

(Gn−3,n
0 (1, 1, 0, 0))n≥10, (G

n−3,n
0 (1, 1, 1, 0))n≥10, (G

n−3,n
0 (0, 1, 1, 0))n≥10.

Periodicity of branches: B2(Gn−3,n
0 (0, 1, 0, 0)) ' B2(Gn−1,n+2

0 (0, 1, 0, 0)) for n ≥ 9.
Maximal depth: d = 2 (restricted to the metabelian skeleton).

Period length: ` = 2.
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Distribution on the Accumulated Coclass 4 Tree
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TKT: F.7 F.11 F.12 F.13 d∗ G.16 G.19 H.4

(3143) (1143) (3143) (1143) (1243) (2143) (3343)
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�

2/0 3/0

• G2
3(K) ∈ G(3, 4) \ G0(3, 4) for 19 (0.9%) of the 2020 discriminants −106 < D < 0.

• G2
3(K) ∈ G(3, 4) \ G0(3, 4) for 2 of the 2576 discriminants 0 < D < 107.

• The accumulated main line d∗ contains 2 main lines of type d∗19, a single main line
of type d∗23, and 2 main lines of type d∗25.
• Due to the Selection Rule (Theorem 6), the G2

3(K) are distributed on even
branches only.
• It is unknown why there is no actual hit of the parents of vertices at depth 2

with invariant k = 1.


