The Distribution of Second p-Class Groups on Coclass Graphs

Conference: 27th Journées Arithmétiques
Place: Vilnius, Lithuania

Date and time: Friday, July 1st, 2011,

15:00-15:20

Author: Daniel C. Mayer

Abstract

. For a given prime p, Leedham-Green, Newman, and Eick have defined the structure of a directed graph $\mathcal{G}(p)$ on the set of all isomorphism classes of finite p-groups. Two vertices are connected by an edge $G \rightarrow H$ if G is isomorphic to the last lower central quotient $H / \gamma_{c}(H)$ where $c=\operatorname{cl}(H)$ denotes the nilpotency class of H. If the condition $|H|=p|G|$ is imposed on the edges, $\mathcal{G}(p)$ is partitioned into countably many disjoint subgraphs $\mathcal{G}(p, r), r \geq 0$, called coclass graphs of p-groups G of coclass $r=\operatorname{cc}(G)=$ $n-\operatorname{cl}(G)$ where $|G|=p^{n}$. A coclass graph $\mathcal{G}(p, r)$ is a forest of finitely many coclass trees $\mathcal{T}\left(G_{i}\right)$ with roots G_{i}, each with a single infinite main line having a pro-p-group of coclass r as its inverse limit, and additionally contains finitely many sporadic groups outside of coclass trees: $\mathcal{G}(p, r)=\left(\cup_{i} \mathcal{T}\left(G_{i}\right)\right) \cup \mathcal{G}_{0}(p, r)$.

By Artin's reciprocity law, the second p-class groups $G_{p}^{2}(K)=\operatorname{Gal}\left(\mathrm{F}_{p}^{2}(K) \mid K\right)$ of algebraic number fields K, where $\mathrm{F}_{p}^{2}(K)$ denotes the second Hilbert p-class field of K, are vertices of the metabelian skeleton of $\mathcal{G}(p)$.

Our aim is firstly to provide a general algorithm for determining the structure of $G_{p}^{2}(K)$ for a given number field K by means of number theoretical invariants of the intermediate fields $K \leq N \leq \mathrm{F}_{p}^{1}(K)$ between K and its first Hilbert p-class field $\mathrm{F}_{p}^{1}(K)$ and secondly to show that the arithmetic of special types of base fields K gives rise to selection rules for $G_{p}^{2}(K)$, e.g.

- If $p=2$ and K is complex quadratic of type $(2,2)$, there are no selection rules and $\mathcal{G}(2,1)$ is entirely populated by the $G_{2}^{2}(K)$, apart from the isolated group C_{4}.
- If $p=3$ and K is complex quadratic of type $(3,3)$ or real quadratic of type $(3,3)$ without total principalization, then either $G_{3}^{2}(K)$ is sporadic or lies on an even branch $\mathcal{B}_{2 k}$ of a coclass tree of an even coclass graph $\mathcal{G}(3,2 j)$.
- If $p \geq 3, K$ is quadratic of type (p, p), and $G_{p}^{2}(K)$ is of coclass 1 , then K must be real quadratic and $G_{p}^{2}(K)$ lies on an odd branch $\mathcal{B}_{2 k+1}$ of the unique coclass tree $\mathcal{T}\left(C_{p} \times C_{p}\right)$ of $\mathcal{G}(p, 1)$.

Our aforementioned new algorithm is based on the family of transfers $\mathrm{V}_{i}: G / G^{\prime} \rightarrow U_{i} / U_{i}^{\prime}$ from a metabelian p-group G to all intermediate groups $G^{\prime} \leq U_{i} \leq G$. We prove that the main lines of coclass trees, and all other coclass families arising from the periodicity of branches, share a common transfer kernel type $\varkappa(G)=\left(\operatorname{ker}\left(\mathrm{V}_{i}\right)\right)$ and that $\varkappa(G)$ is determined by the transfer target type $\tau(G)=\left(\operatorname{str}\left(U_{i} / U_{i}^{\prime}\right)\right)$ where $\operatorname{str}(A)$ denotes the multiplet of type invariants of an abelian p-group A. Consequently, the structure of $G_{p}^{2}(K)$ and the principalization type of a number field K is determined by the structures of the p-class groups $\mathrm{Cl}_{p}\left(N_{i}\right)$ of all intermediate fields $K \leq N_{i} \leq \mathrm{F}_{p}^{1}(K)$, according to the Artin reciprocity law.

We have implemented this algorithm in PARI/GP to determine the structure of the second 3-class groups $G_{3}^{2}(K)=\operatorname{Gal}\left(\mathrm{F}_{3}^{2}(K) \mid K\right)$ of the 4596 quadratic number fields $K=\mathbb{Q}(\sqrt{D})$ with discriminant $-10^{6}<D<10^{7}$ and 3-class group $\mathrm{Cl}_{3}(K)$ of type $(3,3)$ and to analyze their distribution on the coclass graphs $\mathcal{G}(3, r), 1 \leq r \leq 6$.

References.

[1] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. (2011), DOI 10.1007/s00605-010-0277-x.
[2] D. C. Mayer, The second p-class group of a number field (preprint 2010).
[3] D. C. Mayer, Principalization algorithm via class group structure (preprint 2011).

Section 0 .

Introduction and Notation

Interaction:

Class Field Theory \longleftrightarrow Group Theory

$p \geq 2$ prime,
K algebraic number field with p-class rank $\mathrm{r}_{p}\left(\mathrm{Cl}_{p}(K)\right) \geq 2$.
Table 1. Second Hilbert p-class field $\mathrm{F}_{p}^{2}(K)$ and second p-class group $G=\operatorname{Gal}\left(\mathrm{F}_{p}^{2}(K) \mid K\right)$

$\left(U_{i}\right)_{i}$ family of all intermediate normal groups $G^{\prime} \leq U_{i} \leq G$, called the head of G,
$\left(N_{i}\right)_{i}$ family of all intermediate fields $K \leq N_{i} \leq \mathrm{F}_{p}^{1}(K)$,
satisfying $U_{i}=\operatorname{Gal}\left(\mathrm{F}_{p}^{2}(K) \mid N_{i}\right)$ and $U_{i} / G^{\prime} \simeq \operatorname{Norm}_{N_{i} \mid K}\left(\mathrm{Cl}_{p}\left(N_{i}\right)\right)$.

Principalization \longleftrightarrow Transfer

Table 2. Family of class extensions $\mathrm{j}_{N_{i} \mid K}$ and transfers $\mathrm{V}_{G, U_{i}}$

	$\mathrm{j}_{N_{i} \mid K}$			
	$\mathrm{Cl}_{p}(K)$	$\xrightarrow{\longrightarrow}$	$/ / /$	$\mathrm{Cl}_{p}\left(N_{i}\right)$
	G / G^{\prime}	$\xrightarrow{\longrightarrow}$	U_{i} / U_{i}^{\prime}	
		$\mathrm{V}_{G, U_{i}}=\mathrm{V}_{i}$		

Table 3. Corresponding invariants of K and its second p-class group $G=G_{p}^{2}(K)$

p-Principalization Type of K	Transfer Kernel Type $(\mathbf{T K T})$ of G
$\varkappa(K)=\left(\operatorname{ker}\left(\mathrm{j}_{N_{i} \mid K}\right)\right)_{i}$	$\varkappa(G)=\left(\operatorname{ker}\left(\mathrm{V}_{i}\right)\right)_{i}$
Total p-Principalization, for $N_{i} \neq \mathrm{F}_{p}^{1}(K)$	Total Transfer, for $U_{i} \neq G^{\prime}$
$\nu(K)=\#\left\{i \mid \operatorname{ker}\left(\mathrm{j}_{N_{i} \mid K}\right)=\mathrm{Cl}_{p}(K)\right\}$	$\nu(G)=\#\left\{i \mid \operatorname{ker}\left(\mathrm{V}_{i}\right)=G / G^{\prime}\right\}$
p-Class Group Structure Type of K	Transfer Target Type $(\mathbf{T T T})$ of G
$\tau(K)=\left(\operatorname{str}\left(\mathrm{Cl}_{p}\left(N_{i}\right)\right)\right)_{i}$	$\tau(G)=\left(\operatorname{str}\left(U_{i} / U_{i}^{\prime}\right)\right)_{i}$
Exceptional p-rank, for $N_{i} \neq \mathrm{F}_{p}^{1}(K)$	Exceptional p-rank, for $U_{i} \neq G^{\prime}$
$\varepsilon(K)=\#\left\{i \mid \mathrm{r}_{p}\left(\operatorname{Cl}_{p}\left(N_{i}\right)\right) \geq p\right\}$	$\varepsilon(G)=\#\left\{i \mid \mathrm{r}_{p}\left(U_{i} / U_{i}^{\prime}\right) \geq p\right\}$
p-Class Group $\operatorname{Order} \operatorname{Type}$ of K	Weak Transfer Target Type of G
$\tau_{0}(K)=\left(\operatorname{Ord}\left(\operatorname{Cl}_{p}\left(N_{i}\right)\right)\right)_{i}$	$\tau_{0}(G)=\left(\operatorname{ord}\left(U_{i} / U_{i}^{\prime}\right)\right)_{i}$

Terminology concerning Coclass Graphs $\mathcal{G}(p, r)$

- Coclass $\operatorname{cc}(G)$ of a finite p-group G of order $|G|=p^{n}$ and nilpotency class cl (G) is defined by $n=\operatorname{cl}(G)+\operatorname{cc}(G)$.
- Vertex:
the isomorphism class of a finite p-group G of $\operatorname{coclass} \operatorname{cc}(G)=r$.
- H is Immediate Descendant of G, if G is isomorphic to the last lower central quotient $H / \gamma_{c}(H)$, with nilpotency class $c=\operatorname{cl}(H)$ and $\gamma_{c}(H)$ cyclic of order p. Then G and H are connected by a directed edge $G \rightarrow H$.
- Capable Vertex: has at least one immediate descendant. Terminal Vertex: has no immediate descendants.
- H is descendant of G, if there is a path of directed edges from G to H. In particular, H is descendant of itself, with empty path.
- Tree $\mathcal{T}(G)$ with root G : consists of all descendants of G.
- Coclass Tree:
maximal rooted tree containing exactly one infinite path.
- Main Line: the unique maximal infinite path of a coclass tree.
- Branch $\mathcal{B}(G)$ with root G on a main line: $\mathcal{T}(G) \backslash \mathcal{T}(H)$,
H denoting the immediate descendant of G on the main line.
- Depth $\operatorname{dp}(H)$ of a vertex H on a branch $\mathcal{B}(G)$: its distance from the root G on the main line. $\mathcal{B}_{d}(G)$ denotes the branch of bounded depth d.
- Coclass Family $\mathcal{F}(H)$ of a vertex $H \in \mathcal{B}_{d}\left(G_{n}\right)$, where G_{n} denotes the vertex of order p^{n} on the main line (n sufficiently large that periodicity has set in already): the infinite sequence $\left(H_{i}\right)_{i \geq 0}$ of vertices defined recursively by $H_{0}=H$ and $H_{i}=\varphi_{n+(i-1) \ell}\left(H_{i-1}\right)$ for $i \geq 1$ using the periodicity isomorphisms of graphs $\varphi_{n}: \mathcal{B}_{d}\left(G_{n}\right) \rightarrow \mathcal{B}_{d}\left(G_{n+\ell}\right)$ with period length $\ell=p-1$.

Summary of Most Recent Fundamental Insights

- Coclass Theory is particularly well suited as a foundation not only of p-Group Theory but also of Class Field Theory.
- A Coclass Family is arranged vertically on a Coclass Graph and has a Parametrized Presentation for all members (whereas an Isoclinism Family is arranged horizontally, intersects with infinitely many Coclass Graphs, and does not admit a uniform presentation).
- Members of a Coclass Family share a Common Transfer Kernel Type (TKT) and can be viewed as Excited States $\mathrm{T} \uparrow^{n}$ of a Ground State T. (There are, however, Isoclinism Families all of whose members have different TKT.)
- New Top-Down Class Number Formulas for certain

Distinguished Fields N_{1}, N_{2} reveal the Invariants of the Group $G_{p}^{2}(K)$.

- The Modern Top-Down Algorithm either determines the Group uniquely or within a Finite Batch of closely related isoclinic groups (whereas the Classical Bottom-Up Principalization Algorithm only indicates the Infinite Coclass Family to which the Group $G_{p}^{2}(K)$ belongs).
- Total Principalization in the Distinguished Field N_{2} determines Selection Rules for the Group $G_{p}^{2}(K)$ of Quadratic Base Fields K : Parity of the Coclass Graph $\mathcal{G}(p, r)$ and of the Branch $\mathcal{B}(j)$.
- Vertices on Main Lines possess at least One Total Principalization $\varkappa(1)=0$.
- Miech's Invariant k together with

Total Principalization in the Distinguished Field N_{1} determines the Depth of the Group $G_{p}^{2}(K)$ on its Coclass Tree \mathcal{T}.

- The recently discovered Connection between the TKT \varkappa and the Transfer Target Type (TTT) τ made it possible to Extend the Computation of $G_{3}^{2}(K)$ to incredible 2020 complex and 2576 real Quadratic Fields $K=\mathbb{Q}(\sqrt{D})$ with discriminants $-10^{6}<D<10^{7}$ by means of the Top-Down Algorithm.
(The previous state of the art was that
Heider and Schmithals computed \varkappa, but not $G_{3}^{2}(K)$, for 13 complex and 5 real K within $-2 \cdot 10^{4}<D<10^{5}$
using the Bottom-Up Algorithm.)

Section 1.
p-Groups G of Coclass $\operatorname{cc}(G)=1$
($p \geq 2$ prime)

Asymmetry of the Head of Metabelian p-Groups of Coclass 1

Wiman Blackburn Lemma. $p \geq 2$ prime, $G \in \mathcal{G}(p, 1) \Longrightarrow$

1. The abelianization G / G^{\prime} is of diamond type (p, p),
2. The 2-step centralizer $\chi_{2}(G)$ of $\gamma_{2}(G)=G^{\prime}$ with the property

$$
\left[\chi_{2}(G), \gamma_{2}(G)\right] \leq \gamma_{4}(G)
$$

is strictly bigger than $\gamma_{2}(G)$, provided that $|G| \geq p^{4}$, and causes a polarization of the diamond head:

Parametrized Presentations for
 Metabelian p-Groups of Coclass 1

Representatives for the vertices of $\mathcal{G}(p, 1)$ are the groups

$$
G=G_{a}^{n}(z, w)=\langle x, y\rangle
$$

with 2 generators which satisfy the Blackburn Miech Relations

$$
x^{p}=s_{n-1}^{w}, \quad y^{p} \prod_{\ell=2}^{p} s_{\ell}^{\binom{p}{\ell}}=s_{n-1}^{z}, \quad\left[y, s_{2}\right]=\prod_{r=1}^{k} s_{n-r}^{a(n-r)}, \quad|G|=p^{n},
$$

where $s_{2}=[y, x] \in \gamma_{2}(G)$ and $s_{i}=\left[s_{i-1}, x\right] \in \gamma_{i}(G)$ for $i \geq 3$, and

$$
x \in G \backslash \chi_{2}(G), \text { if } n \geq 4, \quad y \in \chi_{2}(G) \backslash \gamma_{2}(G) .
$$

Miech's invariant $0 \leq k \leq \min (n-4, p-2)$ is defined by

$$
\left[\chi_{2}(G), \gamma_{2}(G)\right]=\gamma_{n-k}(G)
$$

and provides a measure for the deviation from the maximal degree of commutativity.

The Coclass Graph $\mathcal{G}(2,1)$

Burnside Gorenstein Theorem.

1. $G / G^{\prime} \simeq(2,2) \Longrightarrow G \in \mathcal{G}(2,1)$.
2. $G \in \mathcal{G}(2,1) \Longrightarrow G$ metabelian.

Main line:
3 coclass families:
Sporadic groups:
Periodicity of branches:
Maximal depth:
Period length:
$\left(C_{2} \times C_{2},\left(D\left(2^{n}\right)\right)_{n \geq 3}\right)$.
$\left(D\left(2^{n}\right)\right)_{n \geq 3},\left(Q\left(2^{n}\right)\right)_{n \geq 4},\left(S D\left(2^{n}\right)\right)_{n \geq 4}$, with invariant $k=0$.
$C_{4}, C_{2} \times C_{2}=V_{4}, Q(8)$.
$\mathcal{B}_{1}\left(D\left(2^{n}\right)\right) \simeq \mathcal{B}_{1}\left(D\left(2^{n+1}\right)\right)$ for $n \geq 3$.
$d=1$.
$\ell=1$.

The Coclass Graph $\mathcal{G}(3,1)$

Wiman Blackburn Theorem.

$$
G \in \mathcal{G}(3,1) \Longrightarrow G \text { metabelian. }
$$


```
Main line:
13 coclass families:
Sporadic groups:
Periodicity of branches:
Maximal depth:
Period length:
\(\left(C_{3} \times C_{3},\left(G_{0}^{n}(0,0)\right)_{n \geq 3}\right)\).
one for even \(n\) only,
\(\left(G_{0}^{n}(-1,0)\right)_{n \geq 4}\), with \(k=0\),
and the others for \(n\) either even or odd,
\(\left(G_{0}^{n}(0,0)\right)_{n \geq 3},\left(G_{0}^{n}(0,1)\right)_{n \geq 4},\left(G_{0}^{n}(1,0)\right)_{n \geq 5}\), with invariant \(k=0\),
\(\left(G_{1}^{n}(0,0)\right)_{n \geq 5},\left(G_{1}^{n}(0,1)\right)_{n \geq 5},\left(G_{1}^{n}(0,-1)\right)_{n \geq 5}\), with \(k=1\).
Sporadic groups:
\(C_{9}, C_{3} \times C_{3}, G_{0}^{3}(0,1), G_{0}^{4}(1,0) \simeq \operatorname{Syl}_{3}\left(A_{9}\right)\).
Maximal depth:
\(\mathcal{B}_{1}\left(G_{0}^{n}(0,0)\right) \simeq \mathcal{B}_{1}\left(G_{0}^{n+2}(0,0)\right)\) for \(n \geq 4\).
Period length:
\(d=1\).
\(\ell=2\).
```


Coclass Families Share a Common Transfer Kernel Type (TKT)

Theorem 1. Transfer Kernel Type $\varkappa(G)$ for $\operatorname{cc}(G)=1, p \geq 3$
Table 4. $\varkappa(G)$ in dependence on $G \in \mathcal{G}(p, 1)$ for $p \geq 3$

Proof: D. C. Mayer, April 2010, see [1] Transfers of metabelian p-groups, Thm.2.6.
Theorem 2. Transfer Kernel Type $\varkappa(G)$ for $\operatorname{cc}(G)=1, p=2$
Table 5. $\varkappa(G)$ in dependence on $G \in \mathcal{G}(2,1)$

TKT	\varkappa	ν	2-Group $G_{a}^{n}(z, w)$ of Coclass 1						$\mathrm{dp}(G)$	tree position
			G	cl (G)	n	a	z	w		
a. 1	(000)	3	$C_{2} \times C_{2}$	1	2				0	root
Q. 5	(123)	0	$Q(8)$	2	3	0	0	1	1	sporadic
d. 8	(032)	1	$D\left(2^{n}\right)$	≥ 2	≥ 3	0	0	0	0	main line
Q. 6	(132)	0	$Q\left(2^{n}\right)$	≥ 3			0	1	1	coclass family
S. 4	(232)	0	$S D\left(2^{n}\right)$	≥ 3	≥ 4	0	1	0	1	coclass family

Proof: D. C. Mayer, October 2009, see [1] Transfers of metabelian p-groups, Thm.2.5.

Branch and Depth on the Coclass Tree $\mathcal{T}\left(C_{p} \times C_{p}\right)$

Theorem 3. The Weak TTT τ_{0} for $p \geq 2, \operatorname{cc}(G)=1$ is given by

$$
\begin{aligned}
\mathrm{h}_{p}\left(\mathrm{~F}_{p}^{1}(K)\right) & =p^{\mathrm{cl}(G)-1}, \\
\mathrm{~h}_{p}\left(N_{1}\right) & =p^{\mathrm{cl}(G)-k}, \\
\mathrm{~h}_{p}\left(N_{i}\right) & =p^{2} \text { for } 2 \leq i \leq p+1 .
\end{aligned}
$$

Whereas $\mathrm{h}_{p}\left(N_{2}\right), \ldots, \mathrm{h}_{p}\left(N_{p+1}\right)$ only indicate that $\operatorname{cc}(G)=1$, $\mathrm{h}_{p}\left(\mathrm{~F}_{p}^{1}(K)\right)$ determines the order $p^{n}, n=\operatorname{cl}(G)+1$, and class of G, and the distinguished $\mathrm{h}_{p}\left(N_{1}\right)$ gives the invariant k of G.
The Branch Root Order of G is given by $\operatorname{cl}(G)+1-\operatorname{dp}(G)$, where the Depth of G is $\operatorname{dp}(G)= \begin{cases}k, & \text { if } \varkappa(1)=0, \\ k+1, & \text { if } \varkappa(1) \neq 0 .\end{cases}$

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Thm.3.2.

Selection Rules for $K=\mathbb{Q}(\sqrt{D}), p \geq 3, \operatorname{cc}(G)=1$

Theorem 4. If $G \in \mathcal{G}(p, 1)$, then K must be real quadratic, $D>0$, and
the p-class numbers of the non-Galois subfields L_{i} of N_{i} are given by

$$
\begin{aligned}
\mathrm{h}_{p}\left(L_{1}\right) & =p^{\frac{\mathrm{cl}(G)-\operatorname{dp}(G)}{2}} \\
\mathrm{~h}_{p}\left(L_{i}\right) & =p \text { for } 2 \leq i \leq p+1 .
\end{aligned}
$$

Whereas $\mathrm{h}_{p}\left(L_{2}\right), \ldots, \mathrm{h}_{p}\left(L_{p+1}\right)$ do not give any information, the distinguished $\mathrm{h}_{p}\left(L_{1}\right)$ enforces $\operatorname{cl}(G)-\operatorname{dp}(G) \equiv 0(\bmod 2)$.
The Branch Root Order of G is odd,

$$
\operatorname{cl}(G)+1-\operatorname{dp}(G) \equiv 1 \quad(\bmod 2)
$$

Population of the Coclass Graph $\mathcal{G}(2,1)$

- The numerical results suggest the conjecture that the tree $\mathcal{T}\left(V_{4}\right)$ is covered entirely by second 2-class groups $G_{2}^{2}(K)$ of complex quadratic fields $K=\mathbb{Q}(\sqrt{D}), D<0$.

Figure 1. TKTs and selection rule for $G_{5}^{2}(K), K=\mathbb{Q}(\sqrt{D}), D>0$, on the metabelian skeleton of $\mathcal{G}(5,1)$, where bigger values of $0 \leq k \leq 3$ occur.

Section 2.

3-Groups G of Coclass $\operatorname{cc}(G)=r$
$(r \geq 2)$

Parametrized Presentations for Metabelian 3-Groups of Coclass at least 2 with Abelianization of type (3, 3)

Nebelung's Lemma. $G \in \mathcal{G}(3, r), r \geq 2 \Longrightarrow$
The smallest integer $s \geq 2$ such that the 2-step centralizer $\chi_{s}(G)$ of $\gamma_{s}(G)$ with the property

$$
\left[\chi_{s}(G), \gamma_{s}(G)\right] \leq \gamma_{s+2}(G)
$$

is strictly bigger than $\gamma_{2}(G)=G^{\prime}$ satisfies the inequalities

$$
3 \leq r+1 \leq s \leq r+2
$$

Representatives for the vertices of $\mathcal{G}(3, r), r \geq 2$, are the groups

$$
G=G_{\rho}^{m, n}(\alpha, \beta, \gamma, \delta)=\langle x, y\rangle
$$

with 2 generators x, y which satisfy the Nebelung Relations

$$
\begin{gathered}
s_{2}^{3}=\sigma_{4} \sigma_{m-1}^{-\rho \beta} \tau_{4}^{-1}, \quad s_{3} \sigma_{3} \sigma_{4}=\sigma_{m-2}^{\rho \beta} \sigma_{m-1}^{\gamma} \tau_{e}^{\delta}, \quad t_{3}^{-1} \tau_{3} \tau_{4}=\sigma_{m-2}^{\rho \delta} \sigma_{m-1}^{\alpha} \tau_{e}^{\beta}, \quad \tau_{e+1}=\sigma_{m-1}^{-\rho} \\
\operatorname{cl}(G)=m-1, \quad|G|=3^{n}, \quad e=n-m+2=\operatorname{cc}(G)+1, \text { where } \\
s_{2}=t_{2}=[y, x] \in \gamma_{2}(G), \quad s_{i}=\left[s_{i-1}, x\right], t_{i}=\left[t_{i-1}, y\right] \in \gamma_{i}(G) \text { for } i \geq 3 \\
\sigma_{3}=y^{3}, \tau_{3}=x^{3} \in \gamma_{3}(G), \quad \sigma_{i}=\left[\sigma_{i-1}, x\right], \tau_{i}=\left[\tau_{i-1}, y\right] \in \gamma_{i}(G) \text { for } i \geq 4 \\
\text { and } \gamma_{3}(G) / \gamma_{4}(G)=\left\langle y^{3}, x^{3}\right\rangle, \quad x \in G \backslash \chi_{s}(G), \text { if } e<m-1, \quad y \in \chi_{s}(G) \backslash G^{\prime}
\end{gathered}
$$

Asymmetry of the Head of

 Metabelian 3-Groups of Coclass at least 2The choice of y, x causes a bipolarization of the diamond head:

Miech's invariant $0 \leq k \leq 1$ is defined by

$$
\left[\chi_{s}(G), \gamma_{e}(G)\right]=\gamma_{m-k}(G)
$$

Top of Coclass Graph $\mathcal{G}(3,2)$ restricted to Groups with Abelianization of Type (3, 3)

3 roots of coclass trees with metabelian main lines:
$B=G_{0}^{5,6}(0,0,0,0), Q_{0}=G_{0}^{4,5}(0,-1,0,1), U_{0}=G_{0}^{4,5}(0,0,0,1)$.
Isolated and sporadic groups:
$Y=G_{0}^{4,5}(0,0,-1,1), Z=G_{0}^{4,5}(1,1,-1,1) ; W_{0}=G_{0}^{4,5}(-1,0,0,1), K_{0}=G_{0}^{4,5}(1,1,1,1)$.

The Coclass Tree $\mathcal{T}\left(U_{0}\right) \subset \mathcal{G}(3,2)$

Structure Theorem.

$G \in \mathcal{T}\left(U_{0}\right) \Longrightarrow \varepsilon(G)=0$.

TKT: E.9	E. 8	c. 21	G.16	G. 16
$(2231)(1231)(0231)$	G.16			
(4231)	$(4231)(4231)$			

Main line:
10 coclass families:
$\left(G_{0}^{n-1, n}(0,0,0,1)\right)_{n \geq 5}$, where $U_{0}=G_{0}^{4,5}(0,0,0,1), U=G_{0}^{5,6}(0,0,0,1)$. metabelian with invariant $k=0$: two for odd n only, $\left(G_{0}^{n-1, n}(0,0,-1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(-1,0,0,1)\right)_{n \geq 7}$, and the others for n either even or odd, $\left(G_{0}^{n-1, n}(0,0,0,1)\right)_{n \geq 5}$, $\left(G_{0}^{n-1, n}(1,0,-1,1)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(0,0,1,1)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(1,0,0,1)\right)_{n \geq 6}$, where $T=G_{0}^{5,6}(1,0,-1,1), V=G_{0}^{5,6}(0,0,1,1), S=G_{0}^{5,6}(1,0,0,1)$.
Periodicity of branches:
Maximal depth:
Period length:
$\mathcal{B}_{3}\left(G_{0}^{n-1, n}(0,0,0,1)\right) \simeq \mathcal{B}_{3}\left(G_{0}^{n+1, n+2}(0,0,0,1)\right)$ for $n \geq 7$.
$d=3$.
$\ell=2$.

The Coclass Tree $\mathcal{T}\left(Q_{0}\right) \subset \mathcal{G}(3,2)$

Main line:
10 coclass families:

Periodicity of branches
Maximal depth:
Period length:
$\left(G_{0}^{n-1, n}(0,-1,0,1)\right)_{n \geq 5}$, where $Q_{0}=G_{0}^{4,5}(0,-1,0,1), Q=G_{0}^{5,6}(0,-1,0,1)$ metabelian with invariant $k=0$: two for odd n only, $\left(G_{0}^{n-1, n}(0,-1,-1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(-1,-1,1,1)\right)_{n \geq 7}$, and the others for n either even or odd, $\left(G_{0}^{n-1, n}(0,-1,0,1)\right)_{n \geq 5}$, $\left(G_{0}^{n-1, n}(1,-1,1,1)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(0,-1,1,1)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(1,-1,-1,1)\right)_{n \geq 6}$, where $P=G_{0}^{5,6}(1,-1,1,1), R=G_{0}^{5,6}(0,-1,1,1), O=G_{0}^{5,6}(1,-1,-1,1)$.
$\mathcal{B}_{3}\left(G_{0}^{n-1, n}(0,-1,0,1)\right) \simeq \mathcal{B}_{3}\left(G_{0}^{n+1, n+2}(0,-1,0,1)\right)$ for $n \geq 7$.
$d=3$.
$\ell=2$.

The Coclass Tree $\mathcal{T}(B) \subset \mathcal{T}\left(B_{0}\right) \subset \mathcal{G}(3,2)$

Structure Theorem.

$G \in \mathcal{T}\left(B_{0}\right) \Longrightarrow \varepsilon(G)=2$.

Selection Rule.

$$
\begin{array}{rcccc}
\text { TKT: } & \text { d. } 23 & \text { d. } 25 & \text { d. } 19 & \text { b. } 10 \\
(1043)(2043)(4043)(0043) & \text { b. } 10 & \text { b. } 10 \\
(0043)(0043)
\end{array}
$$

Main line:
10 coclass families:

Periodicity of branches:
Maximal depth:
Period length:
$\left(G_{0}^{n-1, n}(0,0,0,0)\right)_{n \geq 5}$, where $B_{0}=G_{0}^{4,5}(0,0,0,0), B=G_{0}^{5,6}(0,0,0,0)$. metabelian with invariant $k=0$: two for odd n only, $\left(G_{0}^{n-1, n}(0,0,-1,0)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(1,0,-1,0)\right)_{n \geq 7}$,
and the others for n either even or odd, $\left(G_{0}^{n-1, n}(0,0,0,0)\right)_{n \geq 5}$,
$\left(G_{0}^{n-1, n}(1,0,0,0)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(0,0,1,0)\right)_{n \geq 6},\left(G_{0}^{n-1, n}(1,0,1,0)\right)_{n \geq 6}$, where $D=G_{0}^{5,6}(1,0,0,0), G=G_{0}^{5,6}(0,0,1,0), J=G_{0}^{5,6}(1,0,1,0)$.
$\mathcal{B}_{2}\left(G_{0}^{n-1, n}(0,0,0,0)\right) \simeq \mathcal{B}_{2}\left(G_{0}^{n+1, n+2}(0,0,0,0)\right)$ for $n \geq 7$.
$d=2$.
$\ell=2$.

Branch and Depth on a Coclass Tree

Theorem 5. The Weak TTT τ_{0} for $p=3, \operatorname{cc}(G) \geq 2$ is given by

$$
\begin{aligned}
\mathrm{h}_{3}\left(\mathrm{~F}_{3}^{1}(K)\right) & =3^{\mathrm{cl}(G)+\operatorname{cc}(G)-2}, \\
\mathrm{~h}_{3}\left(N_{1}\right) & =3^{\mathrm{cl}(G)-k}, \\
\mathrm{~h}_{3}\left(N_{2}\right) & =3^{\operatorname{cc}(G)+1}, \\
\mathrm{~h}_{3}\left(N_{i}\right) & =3^{3} \text { for } 3 \leq i \leq 4 .
\end{aligned}
$$

Whereas $\mathrm{h}_{3}\left(N_{3}\right)$ and $\mathrm{h}_{3}\left(N_{4}\right)$ only indicate that $\operatorname{cc}(G) \geq 2$, the distinguished $\mathrm{h}_{3}\left(N_{2}\right)$ gives the precise coclass of G, $\mathrm{h}_{3}\left(\mathrm{~F}_{3}^{1}(K)\right)$ determines the order $3^{n}, n=\operatorname{cl}(G)+\mathrm{cc}(G)$, and class of G, and finally the distinguished $\mathrm{h}_{3}\left(N_{1}\right)$ yields the invariant k of G.

The Branch Root Order of G is given by $\operatorname{cl}(G)+\operatorname{cc}(G)-\operatorname{dp}(G)$,
where the Depth of non-sporadic G is $\operatorname{dp}(G)= \begin{cases}k, & \text { if } \varkappa(1)=0, \\ k+1, & \text { if } \varkappa(1) \neq 0 .\end{cases}$

Proof: D. C. Mayer, May 2003, see [2] The second p-class group of a number field, Thm.3.4.

Selection Rules for $K=\mathbb{Q}(\sqrt{D}), p=3, \mathrm{cc}(G) \geq 2$

Theorem 6. The 3 -class numbers of the non-Galois subfields L_{i} of N_{i} are given by

$$
\begin{aligned}
& \mathrm{h}_{3}\left(L_{1}\right)= \begin{cases}3 \frac{\mathrm{cl}(G)-(k+1)}{2}, & \text { for sporadic } G, \\
3^{\frac{\mathrm{cl}(G)-\mathrm{dp}(G)}{2}}, & \text { otherwise },\end{cases} \\
& \mathrm{h}_{3}\left(L_{2}\right)= \begin{cases}3^{\frac{\operatorname{cc}(G)+1}{2}}, & \text { if } \varkappa(2)=0, \\
3^{\frac{\mathrm{cc}(G)}{2}}, & \text { if } \varkappa(2) \neq 0,\end{cases} \\
& \mathrm{h}_{3}\left(L_{i}\right)=3 \text { for } 3 \leq i \leq 4 .
\end{aligned}
$$

Whereas $\mathrm{h}_{3}\left(L_{3}\right)$ and $\mathrm{h}_{3}\left(L_{4}\right)$ do not give any information, the distinguished $\mathrm{h}_{3}\left(L_{2}\right)$ indicates the coclass of G and enforces

$$
\operatorname{cc}(G) \equiv\left\{\begin{array}{lll}
1 & (\bmod 2), & \text { if } \varkappa(2)=0 \\
0 & (\bmod 2), & \text { if } \varkappa(2) \neq 0,
\end{array}\right.
$$

and the distinguished $\mathrm{h}_{3}\left(L_{1}\right)$ demands $\operatorname{cl}(G)-\operatorname{dp}(G) \equiv 0(\bmod 2)$.
The Branch Root Order of non-sporadic G is given by

$$
\operatorname{cl}(G)+\operatorname{cc}(G)-\operatorname{dp}(G) \equiv\left\{\begin{array}{lll}
1 & (\bmod 2), & \text { if } \varkappa(2)=0 \\
0 & (\bmod 2), & \text { if } \varkappa(2) \neq 0
\end{array}\right.
$$

Proof: D. C. Mayer, October 2005, see [2] The second p-class group of a number field, Thm.4.2.

The TTT τ determines the TKT \varkappa of densely populated sporadic groups

Theorem 7. Structures of Transfer Targets for $\operatorname{cc}(G)=2, \operatorname{cl}(G)=3$ TABLE 6. \varkappa in dependence on τ for $p=3, n=5, k=0$ (Isoclinism family Φ_{6})

		Transfer Target Type τ						
TKT	\varkappa	ν	$\overbrace{\mathrm{Cl}_{3}\left(\mathrm{~F}_{3}^{1}(K)\right)}$	$\mathrm{Cl}_{3}\left(N_{1}\right)$	$\mathrm{Cl}_{3}\left(N_{2}\right)$	$\mathrm{Cl}_{3}\left(N_{3}\right)$	$\mathrm{Cl}_{3}\left(N_{4}\right)$	ε
b.10	(0043)	2	$(3,3,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	$(3,3,3)$	2
c.21	(0231)	1	$(3,3,3)$	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$	0
c.18	(0313)	1	$(3,3,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	$(9,3)$	1
D.10	(2241)	0	$(3,3,3)$	$(9,3)$	$(9,3)$	$(3,3,3)$	$(9,3)$	1
G.19	(2143)	0	$(3,3,3)$	$(9,3)$	$(9,3)$	$(9,3)$	$(9,3)$	0
H.4	(4443)	0	$(3,3,3)$	$(3,3,3)$	$(3,3,3)$	$(9,3)$	$(3,3,3)$	3
D.5	(4224)	0	$(3,3,3)$	$(3,3,3)$	$(9,3)$	$(3,3,3)$	$(9,3)$	2

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.4.
Theorem 8. Structures of Transfer Targets for $\operatorname{cc}(G)=2, \operatorname{cl}(G)=4$
TABLE 7. \varkappa in dependence on τ for $p=3, n=6, k=1$ (Isoclinism families $\Phi_{40}, \ldots, \Phi_{43}$)

| | | Transfer Target Type τ | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TKT | \varkappa | ν | $\overbrace{\mathrm{Cl}_{3}\left(\mathrm{~F}_{3}^{1}(K)\right)}$ | $\mathrm{Cl}_{3}\left(N_{1}\right)$ | $\mathrm{Cl}_{3}\left(N_{2}\right)$ | $\mathrm{Cl}_{3}\left(N_{3}\right)$ | $\mathrm{Cl}_{3}\left(N_{4}\right)$ | ε |
| b.10 | (0043) | 2 | $(9,3,3)$ | $(9,3)$ | $(9,3)$ | $(3,3,3)$ | $(3,3,3)$ | 2 |
| H.4 | (4443) | 0 | $(9,3,3)$ | $(3,3,3)$ | $(3,3,3)$ | $(9,3)$ | $(3,3,3)$ | 3 |
| G.19 | (2143) | 0 | $(3,3,3,3)$ | $(9,3)$ | $(9,3)$ | $(9,3)$ | $(9,3)$ | 0 |
| b.10 | (0043) | 2 | $(3,3,3,3)$ | $(9,3)$ | $(9,3)$ | $(3,3,3)$ | $(3,3,3)$ | 2 |

Proof: D.C.Mayer, December 2009, [3] Principalisation algorithm via class group structure, Thm.2.5.

For $p=2$, however, \varkappa is not determined by τ.

Theorem 9. Structures of Transfer Targets for $p=2, \operatorname{cc}(G)=1$ Table 8. Different TKT's \varkappa sharing the same TTT τ, for each $n \geq 4$

			Transfer Target Type τ				
TKT	\varkappa	ν	$\mathrm{Cl}_{2}\left(\mathrm{~F}_{2}^{1}(K)\right)$	$\mathrm{Cl}_{3}\left(N_{1}\right)$	$\mathrm{Cl}_{3}\left(N_{2}\right)$	$\mathrm{Cl}_{3}\left(N_{3}\right)$	ε
a.1	(000)	3	1	(2)	(2)	(2)	0
Q.5	(123)	0	(2)	(4)	(4)	(4)	0
d.8	(032)	1	$\left(2^{n-2}\right)$	$\left(2^{n-1}\right)$	$(2,2)$	$(2,2)$	2
Q.6	(132)	0	$\left(2^{n-2}\right)$	$\left(2^{n-1}\right)$	$(2,2)$	$(2,2)$	2
S.4	(232)	0	$\left(2^{n-2}\right)$	$\left(2^{n-1}\right)$	$(2,2)$	$(2,2)$	2

Proof: D. C. Mayer, April 2010, see [2] The second p-class group of a number field, Sec.9.

Section 3.

Second 3-Class Groups $G_{3}^{2}(K)$
of Quadratic Fields $K=\mathbb{Q}(\sqrt{D})$

Methods for Determining the Group $G_{3}^{2}(K)$

The following table shows the fineness of resolution, i.e. the accuracy, in determining the position of $G_{3}^{2}(K)$ on the coclass graphs $\mathcal{G}(3, r)$, obtained by Scholz and Taussky's Classical Bottom-Up Algorithm, by our Recent Top-Down Algorithm, and by a combination of both algorithms, for each transfer kernel type (TKT) \varkappa. By a family we understand an infinite coclass family and by an m-batch we understand a multiplet of $m \geq 2$ immediate descendants of a common parent.

Table 9. Comparison of the Bottom-Up and Top-Down Algorithm

TKT	Algorithm		
	Bottom-Up	Combined	Top-Down
a. 1	3 families	3 -batch	3-batch
a. 2	family	vertex	3 -batch with a. 3
a.3*	2 families with a. 3	vertex	vertex
a. 3	2 families with a. 3^{*}	vertex	2-batch with a. 2
a. $3 \uparrow$	2 families	2-batch	3 -batch with a. 2
b. 10	infinitely many families	6 - or 9-batch	6 - or 9-batch
c. 18	main line	vertex	vertex
c. 21	main line	vertex	vertex
d*. 19	infinitely many main lines	2 vertices on different trees	5 vertices on different trees
$\mathrm{d}^{*} .23$	infinitely many main lines	vertex	5 vertices on different trees
$\mathrm{d}^{*} .25$	infinitely many main lines	2 vertices on different trees	5 vertices on different trees
d. 19	infinitely many families	2-batch	5 -batch with d. 23,25
d. 23	infinitely many families	vertex	5 -batch with d.19,25
d. 25	infinitely many families	2 -batch	5 -batch with d.19,23
A. 1	impossible	impossible	impossible
D. 5	vertex	vertex	vertex
D. 10	vertex	vertex	vertex
G. 19	infinitely many families	2-batch	2-batch
H. 4	infinitely many families	4 -batch	4-batch
E. 6	family	vertex	3-batch with E. 14
E. 14	2 families	2-batch	3-batch with E. 6
E. 8	family	vertex	3-batch with E. 9
E. 9	2 families	2-batch	3-batch with E. 8
G. 16	infinitely many families	two 4-batches	two 4-batches
H. $4 \uparrow$	infinitely many families	two 4-batches	two 4-batches
F. 7	infinitely many families	3-batch	13-batch with F.11,12,13
F. 11	infinitely many families	2-batch	13-batch with F.7,12,13
F. 12	infinitely many families	4-batch	13-batch with F.7,11,13
F. 13	infinitely many families	4-batch	13-batch with F.7,11,12
G.16r	infinitely many families	4-batch	18 vertices with G.19r,H.4r
G.19r	infinitely many families	two 3-batches	18 vertices with G.16r,H.4r
H.4r	infinitely many families	two 4-batches	18 vertices with G.16r,G.19r
G.16i	infinitely many families	3-batch	12 vertices with G.19i,H.4i
G.19i	infinitely many families	4-batch	12 vertices with G.16i,H.4i
H.4i	infinitely many families	5 -batch	12 vertices with G.16i,G.19i
F.7个	infinitely many families	4 vertices on different trees	24 vertices on different trees
F. $11 \uparrow$	infinitely many families	4 vertices on different trees	24 vertices on different trees
F.12个	infinitely many families	8 vertices on different trees	24 vertices on different trees
F. $13 \uparrow$	infinitely many families	8 vertices on different trees	24 vertices on different trees

Distribution on the Coclass Graph $\mathcal{G}(3,1)$

TKT:	a.3	a.3	a.2	a.1	a.1	a.1	a.1
	(2000)	(2000)	(1000)	(0000)	(0000)	(0000)	(0000)

- $G_{3}^{2}(K) \in \mathcal{G}(3,1)$ for $2303(\mathbf{8 9 . 4} \%)$ of the 2576 discriminants $0<D<10^{7}$.
- Since the Transfer Kernel Types \varkappa of all coclass families are total with $\nu \geq 3$, there occur $G_{3}^{2}(K)$ of real quadratic fields $K=\mathbb{Q}(\sqrt{D}), D>0$ only.
- Due to the Selection Rule (Theorem 4), the $G_{3}^{2}(K)$ are distributed on odd branches only. This is a restriction from 13 to 7 coclass families: the main line $\left(G_{0}^{n}(0,0)\right)_{n \geq 3}$ for odd n, and the others for even n, $\left(G_{0}^{n}(0,1)\right)_{n \geq 4},\left(G_{0}^{n}(1,0)\right)_{n \geq 4},\left(G_{0}^{n}(-1,0)\right)_{n \geq 4}$, with invariant $k=0$, $\left(G_{1}^{n}(0,0)\right)_{n \geq 6},\left(G_{1}^{n}(0,1)\right)_{n \geq 6},\left(G_{1}^{n}(0,-1)\right)_{n \geq 6}$, with $k=1$.
Only one of these groups is intrinsically sporadic: $G_{0}^{4}(1,0) \simeq \operatorname{Syl}_{3}\left(A_{9}\right)$.
- Open Problem: It is unknown why there is no actual hit of the main line.

Distribution among Sporadic Groups of $\mathcal{G}(3,2)$

- $G_{3}^{2}(K) \in \mathcal{G}_{0}(3,2)$ for $1327(\mathbf{6 5 . 7} \%)$ of the 2020 discriminants $-10^{6}<D<0$.
- $G_{3}^{2}(K) \in \mathcal{G}_{0}(3,2)$ for $178(\mathbf{6 . 9} \%)$ of the 2576 discriminants $0<D<10^{7}$.
- Isolated and sporadic groups:
$Y=G_{0}^{4,5}(0,0,-1,1), Z=G_{0}^{4,5}(1,1,-1,1) ; W_{0}=G_{0}^{4,5}(-1,0,0,1), K_{0}=G_{0}^{4,5}(1,1,1,1)$.
- It is unknown why there is no actual hit of the vertices W_{0} and K_{0}.

Distribution on the Coclass 2 Tree $\mathcal{T}\left(U_{0}\right)$

- $G_{3}^{2}(K) \in \mathcal{T}\left(U_{0}\right)$ for $291(\mathbf{1 4 . 4} \%)$ of the 2020 discriminants $-10^{6}<D<0$.
- $G_{3}^{2}(K) \in \mathcal{T}\left(U_{0}\right)$ for $43(\mathbf{1 . 7} \%)$ of the 2576 discriminants $0<D<10^{7}$.
- Since the Transfer Kernel Type $\varkappa=$ (0231) of the main line (c.21) is total with $\varkappa(1)=0$, there only occur $G_{3}^{2}(K)$ of real quadratic fields $K=\mathbb{Q}(\sqrt{D}), D>0$ on the main line.
- Due to the Selection Rule (Theorem 6), the $G_{3}^{2}(K)$ are distributed on even branches only. This is a restriction from 10 to 6 metabelian coclass families with invariant $k=0$: the main line $\left(G_{0}^{n-1, n}(0,0,0,1)\right)_{n \geq 6}$ for even n, and the others for odd $n,\left(G_{0}^{n-1, n}(0,0,-1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(0,0,1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(1,0,-1,1)\right)_{n \geq 7}$, $\left(G_{0}^{n-1, n}(-1,0,0,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(1,0,0,1)\right)_{n \geq 7}$.
- It is unknown why there is no actual hit of the vertices $\left(G_{0}^{n-1, n}(\pm 1,0,0,1)\right)_{n \geq 7}$.

Distribution on the Coclass 2 Tree $\mathcal{T}\left(Q_{0}\right)$

- $G_{3}^{2}(K) \in \mathcal{T}\left(Q_{0}\right)$ for $270(\mathbf{1 3 . 4} \%)$ of the 2020 discriminants $-10^{6}<D<0$.
- $G_{3}^{2}(K) \in \mathcal{T}\left(Q_{0}\right)$ for $39(\mathbf{1 . 5 \%})$ of the 2576 discriminants $0<D<10^{7}$.
- Since the Transfer Kernel Type $\varkappa=(0313)$ of the main line (c.18) is total with $\varkappa(1)=0$, there only occur $G_{3}^{2}(K)$ of real quadratic fields $K=\mathbb{Q}(\sqrt{D}), D>0$ on the main line.
- Due to the Selection Rule (Theorem 6), the $G_{3}^{2}(K)$ are distributed on even branches only. This is a restriction from 10 to 6 metabelian coclass families with invariant $k=0$: the main line $\left(G_{0}^{n-1, n}(0,-1,0,1)\right)_{n \geq 6}$ for even n, and the others for odd $n,\left(G_{0}^{n-1, n}(0,-1,-1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(0,-1,1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(1,-1,1,1)\right)_{n \geq 7}$, $\left(G_{0}^{n-1, n}(-1,-1,1,1)\right)_{n \geq 7},\left(G_{0}^{n-1, n}(1,-1,-1,1)\right)_{n \geq 7}$.
- It is unknown why there is no actual hit of the vertices $\left(G_{0}^{n-1, n}(\pm 1,-1, \mp 1,1)\right)_{n \geq 7}$.

Metabelian Skeleton of Coclass Tree $\mathcal{T}\left(b_{10}^{3}\right) \subset \mathcal{G}(3,3)$

Structure Theorem.

$G \in \mathcal{G}(3,3) \Longrightarrow \varepsilon(G)=2$.

Selection Rule.
$K=\mathbb{Q}(\sqrt{D}), G_{3}^{2}(K) \in \mathcal{G}(3,3) \Longrightarrow D>0, G_{3}^{2}(K) \in \mathcal{T}\left(b_{10}^{3}\right)$.

TKT:	d.23	d.25	d.19	b. 10
(1043)	(2043)	$(4043)(0043)$	b. 10	
	(0043)			

Main line:
10 coclass families:

Periodicity of branches:
Maximal depth:
Period length:
$\left(G_{0}^{n-2, n}(0,0,0,0)\right)_{n \geq 7}$, with root $b_{10}^{3}=G_{0}^{5,7}(0,0,0,0)$.
metabelian with invariant $k=0$: two for even n only,
$\left(G_{0}^{n-2, n}(0,0,-1,0)\right)_{n \geq 8},\left(G_{0}^{n-2, n}(1,0,-1,0)\right)_{n \geq 8}$,
and the others for n either even or odd, $\left(G_{0}^{n-1, n}(0,0,0,0)\right)_{n \geq 7}$,
$\left(G_{0}^{n-2, n}(1,0,0,0)\right)_{n \geq 8},\left(G_{0}^{n-2, n}(0,0,1,0)\right)_{n \geq 8},\left(G_{0}^{n-2, n}(1,0,1,0)\right)_{n \geq 8}$.
$\mathcal{B}_{1}\left(G_{0}^{n-2, n}(0,0,0,0)\right) \simeq \mathcal{B}_{1}\left(G_{0}^{n, n+2}(0,0,0,0)\right)$ for $n \geq 8$.
$d=1$ (restricted to the metabelian skeleton).
$\ell=2$.

Distribution on the Coclass 3 Tree $\mathcal{T}\left(b_{10}^{3}\right)$

- $G_{3}^{2}(K) \in \mathcal{G}(3,3)$ for $10(\mathbf{0 . 4} \%)$ of the 2576 discriminants $0<D<10^{7}$.
- Since the Transfer Kernel Types \varkappa of all coclass families are total with $\varkappa(2)=0$, there occur $G_{3}^{2}(K)$ of real quadratic fields $K=\mathbb{Q}(\sqrt{D}), D>0$ only.
- Due to the Selection Rule (Theorem 6), the $G_{3}^{2}(K)$ are distributed on odd branches only.
- It is unknown why there is no actual hit of the main line $\left(G_{0}^{n-2, n}(0,0,0,0)\right)_{n \geq 7}$.

Top of Coclass Graph $\mathcal{G}(3,4)$ restricted to Groups with Abelianization of Type (3,3)

6 roots of coclass trees with metabelian main lines:
$b_{10}^{4}=G_{0}^{6,9}(0,0,0,0), d_{19}^{*}=G_{0}^{6,9}(0,1,0,1), d_{19}^{*}(-)=G_{0}^{6,9}(0,-1,0,1)$,
$d_{23}^{*}=G_{0}^{6,9}(0,0,0,1), d_{25}^{*}=G_{0}^{6,9}(0,1,0,0), d_{25}^{*}(-)=G_{0}^{6,9}(0,-1,0,0)$.
51 isolated and sporadic groups.

Distribution among Sporadic Groups of $\mathcal{G}(3,4)$

- $G_{3}^{2}(K) \in \mathcal{G}_{0}(3,4)$ for $112(5.5 \%)$ of the 2020 discriminants $-10^{6}<D<0$.
- $G_{3}^{2}(K) \in \mathcal{G}_{0}(3,4)$ for 1 of the 2576 discriminants $0<D<10^{7}$.
- It is unknown why there is no actual hit of the roots of the sporadic trees.

Metabelian Skeleton of Coclass Tree
 $\mathcal{T}\left(d_{19}^{*}\right) \subset \mathcal{G}(3,4)$

Main line:
14 coclass families:

Periodicity of branches:
Maximal depth:
Period length:
$\left(G_{0}^{n-3, n}(0,1,0,1)\right)_{n \geq 9}$, with root $d_{19}^{*}=G_{0}^{6,9}(0,1,0,1)$
metabelian with invariant $k=0$: four for odd n only,
$\left(G_{0}^{n-3, n}(-1,1,1,1)\right)_{n \geq 11},\left(G_{0}^{n-3, n}(-1,1,0,1)\right)_{n \geq 11},\left(G_{0}^{n-3, n}(0,1,-1,1)\right)_{n \geq 11}$, $\left(G_{0}^{n-3, n}(-1,1,-1,1)\right)_{n \geq 11}$,
and the others for n either even or odd, $\left(G_{0}^{n-3, n}(0,1,0,1)\right)_{n \geq 9}$,
$\left(G_{0}^{n-3, n}(1,1,-1,1)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(1,1,0,1)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(0,1,1,1)\right)_{n \geq 10}$, $\left(G_{0}^{n-3, n}(1,1,1,1)\right)_{n \geq 10}$.
$\mathcal{B}_{2}\left(G_{0}^{n-3, n}(0,1,0,1)\right) \simeq \mathcal{B}_{2}\left(G_{0}^{n-1, n+2}(0,1,0,1)\right)$ for $n \geq 9$.
$d=2$ (restricted to the metabelian skeleton).
$\ell=2$.

Metabelian Skeleton of Coclass Tree
 $\mathcal{T}\left(d_{23}^{*}\right) \subset \mathcal{G}(3,4)$

Main line:
14 coclass families:

Periodicity of branches:
Maximal depth:
Period length:
$\left(G_{0}^{n-3, n}(0,0,0,1)\right)_{n \geq 9}$, with root $d_{23}^{*}=G_{0}^{6,9}(0,0,0,1)$
metabelian with invariant $k=0$: four for odd n only,
$\left(G_{0}^{n-3, n}(0,0,-1,1)\right)_{n \geq 11},\left(G_{0}^{n-3, n}(-1,0,1,1)\right)_{n \geq 11},\left(G_{0}^{n-3, n}(-1,0,-1,1)\right)_{n \geq 11}$, $\left(G_{0}^{n-3, n}(-1,0,0,1)\right)_{n \geq 11}$,
and the others for n either even or odd, $\left(G_{0}^{n-3, n}(0,0,0,1)\right)_{n \geq 9}$,
$\left(G_{0}^{n-3, n}(0,0,1,1)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(1,0,1,1)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(1,0,-1,1)\right)_{n \geq 10}$, $\left(G_{0}^{n-3, n}(1,0,0,1)\right)_{n \geq 10}$.
$\mathcal{B}_{2}\left(G_{0}^{n-3, n}(0,0,0,1)\right) \simeq \mathcal{B}_{2}\left(G_{0}^{n-1, n+2}(0,0,0,1)\right)$ for $n \geq 9$.
$d=2$ (restricted to the metabelian skeleton)
$\ell=2$.

Metabelian Skeleton of Coclass Tree $\mathcal{T}\left(d_{25}^{*}\right) \subset \mathcal{G}(3,4)$

Structure Theorem.

Main line:
10 coclass families:

Periodicity of branches:
Maximal depth:
Period length:
$\left(G_{0}^{n-3, n}(0,1,0,0)\right)_{n \geq 9}$, with root $d_{25}^{*}=G_{0}^{6,9}(0,1,0,0)$. metabelian with invariant $k=0$: two for odd n only,
$\left(G_{0}^{n-3, n}(1,1,-1,0)\right)_{n \geq 11},\left(G_{0}^{n-3, n}(0,1,-1,0)\right)_{n \geq 11}$,
and the others for n either even or odd, $\left(G_{0}^{n-3, n}(0,1,0,0)\right)_{n \geq 9}$,
$\left(G_{0}^{n-3, n}(1,1,0,0)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(1,1,1,0)\right)_{n \geq 10},\left(G_{0}^{n-3, n}(0,1,1,0)\right)_{n \geq 10}$.
$\mathcal{B}_{2}\left(G_{0}^{n-3, n}(0,1,0,0)\right) \simeq \mathcal{B}_{2}\left(G_{0}^{n-1, n+2}(0,1,0,0)\right)$ for $n \geq 9$.
$d=2$ (restricted to the metabelian skeleton).
$\ell=2$.

Distribution on the Accumulated Coclass 4 Tree d^{*}

- $G_{3}^{2}(K) \in \mathcal{G}(3,4) \backslash \mathcal{G}_{0}(3,4)$ for $19(\mathbf{0 . 9} \%)$ of the 2020 discriminants $-10^{6}<D<0$.
- $G_{3}^{2}(K) \in \mathcal{G}(3,4) \backslash \mathcal{G}_{0}(3,4)$ for 2 of the 2576 discriminants $0<D<10^{7}$.
- The accumulated main line d^{*} contains 2 main lines of type d_{19}^{*}, a single main line of type d_{23}^{*}, and 2 main lines of type d_{25}^{*}.
- Due to the Selection Rule (Theorem 6), the $G_{3}^{2}(K)$ are distributed on even branches only.
- It is unknown why there is no actual hit of the parents of vertices at depth 2 with invariant $k=1$.

