

Differential Principal Factors of Number Field Extensions

Conference:	3rd International Conference		
	on Algebra, Number Theory and		
	Applications (ICANTA) Oujda 2019		
Place:	Université Mohammed Premier		
	Faculté des Sciences		
Venue:	Oujda, Region Oriental, Maroc		
Date:	Avril 24 – 27, 2019		
Author:	Daniel C. Mayer (Graz, Austria)		
Affiliation:	Austrian Science Fund (FWF)		

A presentation within the frame of the international scientific research project

Towers of *p*-Class Fields over Algebraic Number Fields

supported by the Austrian Science Fund (FWF): Projects J 0497-PHY and P 26008-N25

1. INTRODUCTION

The intention of this lecture is to establish a common theoretical framework for the classification of

- dihedral fields N/\mathbb{Q} of degree 2p with an odd prime p, viewed as p-ring class fields over a quadratic field K, and
- pure metacyclic fields $N = K(\sqrt[p]{D})$ of degree $(p-1) \cdot p$ with an odd prime p, viewed as Kummer extensions of a cyclotomic field $K = \mathbb{Q}(\zeta_p)$,

by the following arithmetical invariants:

- (1) the \mathbb{F}_p -dimensions of subspaces of the space $\mathcal{P}_{N/K}/\mathcal{P}_K$ of primitive ambiguous principal ideals, which are also called *differential principal factors*, of N/K,
- (2) the capitulation kernel $\ker(T_{N/K})$ of the transfer homomorphism $T_{N/K}$: $\operatorname{Cl}_p(K) \to \operatorname{Cl}_p(N)$ of *p*-classes, and
- (3) the Galois cohomology $\mathrm{H}^{0}(G, U_{N})$, $\mathrm{H}^{1}(G, U_{N})$ of the unit group U_{N} as a module over the automorphism group $G = \mathrm{Gal}(N/K) \simeq C_{p}$.

2. Primitive ambiguous ideals

Let $p \geq 2$ be a prime number, and N/K be a relative extension of number fields with degree p, not necessarily Galois.

Definition 2.1. The group \mathcal{I}_N of fractional ideals of N contains the subgroup of ambiguous ideals of N/K, $\mathcal{I}_{N/K} := \{\mathfrak{A} \in \mathcal{I}_N \mid \mathfrak{A}^p \in \mathcal{I}_K\}$. The quotient $\mathcal{I}_{N/K}/\mathcal{I}_K$ is called the \mathbb{F}_p -vector space of primitive ambiguous ideals of N/K.

Proposition 2.1. Let $\mathfrak{L}_1, \ldots, \mathfrak{L}_t$ be the totally ramified prime ideals of N/K, then a basis and the dimension of $\mathcal{I}_{N/K}/\mathcal{I}_K$ over \mathbb{F}_p are finite and given by

$$\mathcal{I}_{N/K}/\mathcal{I}_K \simeq \prod_{i=1}^t \left(\langle \mathfrak{L}_i \rangle / \langle \mathfrak{L}_i^p \rangle \right) \simeq \mathbb{F}_p^t, \quad \dim_{\mathbb{F}_p}(\mathcal{I}_{N/K}/\mathcal{I}_K) = t,$$

whereas $\mathcal{I}_{N/K}$ is an infinite abelian group containing \mathcal{I}_K .

Proof. By the definition of $\mathcal{I}_{N/K}$, the quotient $\mathcal{I}_{N/K}/\mathcal{I}_K$ is an elementary abelian *p*-group. By the decomposition law for prime ideals of *K* in *N*, the space $\mathcal{I}_{N/K}/\mathcal{I}_K$ is generated by the totally ramified prime ideals (with ramification index e = p) of N/K: $\mathcal{I}_{N/K} = \langle \mathfrak{L} \in \mathbb{P}_N | \mathfrak{L}^p \in \mathbb{P}_K \rangle \cdot \mathcal{I}_K$. According to the theorem on prime ideals dividing the discriminant, the number *t* is finite. \Box

4

If L is another subfield of N such that $N = L \cdot K$ is the compositum of L and K, and N/L is of degree q coprime to p, then the relative norm homomorphism $N_{N/L}$ induces an epimorphism

(2.1)
$$N_{N/L}: \mathcal{I}_{N/K}/\mathcal{I}_K \to \mathcal{I}_{L/F}/\mathcal{I}_F,$$

where $F := L \cap K$ denotes the intersection of L and K. According to the isomorphism theorem, we have proved:

Theorem 2.1. There are two isomorphisms between \mathbb{F}_p -vector spaces, quotient and direct product:

(2.2) $\begin{aligned} (\mathcal{I}_{N/K}/\mathcal{I}_K)/\ker(N_{N/L}) &\simeq \mathcal{I}_{L/F}/\mathcal{I}_F, \\ \mathcal{I}_{N/K}/\mathcal{I}_K &\simeq (\mathcal{I}_{L/F}/\mathcal{I}_F) \times \ker(N_{N/L}). \end{aligned}$

Definition 2.2. Since the relative different of N/K is essentially given by $\mathfrak{D}_{N/K} = \prod_{i=1}^{t} \mathfrak{L}_{i}^{p-1}$ the space $\mathcal{I}_{N/K}/\mathcal{I}_{K} \simeq \prod_{i=1}^{t} (\langle \mathfrak{L}_{i} \rangle / \langle \mathfrak{L}_{i}^{p} \rangle)$ of primitive ambiguous ideals of N/K is also called the space of *differential factors* of N/K. The two subspaces in the direct product decomposition of $\mathcal{I}_{N/K}/\mathcal{I}_{K}$ in formula (2.2) are called

subspace $\mathcal{I}_{L/F}/\mathcal{I}_F$ of *absolute* differential factors of L/F and subspace ker $(N_{N/L})$ of *relative* differential factors of N/K.

Daniel C. Mayer (Austrian Science Fund), Differential principal factors, ICANTA Oujda 2019

2.1. Splitting off the norm kernel. The second isomorphism in formula (2.2) causes a *dichotomic decomposition* of the space $\mathcal{I}_{N/K}/\mathcal{I}_K$ into two components, whose dimensions can be given under the following conditions:

Theorem 2.2. Let p be an odd prime and put q = 2. Among the prime ideals of L which are totally ramified over F, denote by $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ those which split in N, $\mathfrak{p}_i \mathcal{O}_N =$ $\mathfrak{P}_i \mathfrak{P}'_i$ for $1 \leq i \leq s$, and by $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ those which remain inert in N, $\mathfrak{q}_j \mathcal{O}_N = \mathfrak{Q}_j$ for $1 \leq j \leq n$. Then the space $\mathcal{I}_{N/K}/\mathcal{I}_K$ is the direct product of the subspace $\mathcal{I}_{L/F}/\mathcal{I}_F$ of absolute differential factors of L/F and the subspace ker $(N_{N/L})$ of relative differential factors of N/K, whose bases over \mathbb{F}_p can be given by

$$\mathcal{I}_{L/F}/\mathcal{I}_F \simeq \prod_{i=1}^s \left(\langle \mathfrak{p}_i \rangle / \langle \mathfrak{p}_i^p \rangle \right) \times \prod_{j=1}^n \left(\langle \mathfrak{q}_j \rangle / \langle \mathfrak{q}_j^p \rangle \right) \simeq \mathbb{F}_p^{s+n},$$
$$\ker(N_{N/L}) \simeq \prod_{i=1}^s \left(\langle \mathfrak{P}_i(\mathfrak{P}'_i)^{p-1} \rangle / \langle (\mathfrak{P}_i(\mathfrak{P}'_i)^{p-1})^p \rangle \right) \simeq \mathbb{F}_p^s.$$

Consequently, the complete space of differential factors has the dimension $\dim_{\mathbb{F}_p}(\mathcal{I}_{N/K}/\mathcal{I}_K) = n + 2s$.

Proof. Whereas the qualitative formula (2.2) is valid for any prime $p \ge 2$ and any integer q > 1 with gcd(p,q) = 1, the quantitative description of the norm kernel ker $(N_{N/L})$ is only feasible for q = 2 and an odd prime $p \ge 3$. Replacing Nby L and K by F in formula (2.2), we get t = n + s and thus the first isomorphism. For N and K, however, we obtain t = n + 2s. If s = 0 (none of the totally ramified primes of L/F splits in N), then the induced norm mapping $N_{N/L}$ in formula (2.1) is an isomorphism. \Box

3. PRIMITIVE AMBIGUOUS PRINCIPAL IDEALS

The preceding result concerned *primitive ambiguous* ideals of N/K, which can be interpreted as ideal factors of the *relative different* $\mathfrak{D}_{N/K}$. Formula (2.1) and Theorem 2.1 show that the \mathbb{F}_p -dimension of the space $\mathcal{I}_{N/K}/\mathcal{I}_K$ increases indefinitely with the number t of totally ramified primes of N/K.

Now we restrict our attention to the space $\mathcal{P}_{N/K}/\mathcal{P}_K$ of *primitive ambiguous* **principal ideals** or **differential principal factors** (DPF) of N/K. We shall see that fundamental constraints from Galois cohomology prohibit an infinite growth of its dimension over \mathbb{F}_p , for quadratic fields K.

3.1. Splitting off the capitulation kernel. We have to cope with a difficulty which arises in the case of a non-trivial class group $\operatorname{Cl}(K) = \mathcal{I}_K/\mathcal{P}_K > 1$, because then $\mathcal{P}_{N/K}/\mathcal{P}_K$ cannot be viewed as a subspace of $\mathcal{I}_{N/K}/\mathcal{I}_K$. Therefore we must separate the *capitulation kernel* of N/K, that is the kernel of the *transfer* homomorphism

 $T_{N/K}: \operatorname{Cl}(K) \to \operatorname{Cl}(N), \ \mathfrak{a} \cdot \mathcal{P}_K \mapsto (\mathfrak{a}\mathcal{O}_N) \cdot \mathcal{P}_N,$ which extends classes of K to classes of N: $\operatorname{ker}(T_{N/K}) = \{\mathfrak{a} \cdot \mathcal{P}_K \mid (\exists A \in N) \mathfrak{a}\mathcal{O}_N = A\mathcal{O}_N\} = (\mathcal{I}_K \cap \mathcal{P}_N)/\mathcal{P}_K.$ On the one hand, $\operatorname{ker}(T_{N/K}) = (\mathcal{I}_K \cap \mathcal{P}_N)/\mathcal{P}_K$ is a subgroup of $\mathcal{I}_K/\mathcal{P}_K = \operatorname{Cl}(K)$, consisting of capitulating ideal classes of K. On the other hand, since $\mathcal{I}_K \leq \mathcal{I}_{N/K}$ consists of ambiguous ideals of N/K, $\operatorname{ker}(T_{N/K}) = (\mathcal{I}_K \cap \mathcal{P}_N)/\mathcal{P}_K$ is a subgroup of $\mathcal{P}_{N/K}/\mathcal{P}_K$, consisting of special primitive ambiguous principal ideals of N/K, and we can form the quotient

$$(\mathcal{P}_{N/K}/\mathcal{P}_K)/((\mathcal{I}_K \cap \mathcal{P}_N)/\mathcal{P}_K) \simeq \mathcal{P}_{N/K}/(\mathcal{I}_K \cap \mathcal{P}_N)$$

= $\mathcal{P}_{N/K}/(\mathcal{I}_K \cap \mathcal{P}_{N/K}) \simeq (\mathcal{P}_{N/K} \cdot \mathcal{I}_K)/\mathcal{I}_K.$

This quotient relation of $\mathbb{F}_p\text{-vector}$ spaces is equivalent to a direct product relation

(3.1) $\mathcal{P}_{N/K}/\mathcal{P}_K \simeq (\mathcal{P}_{N/K} \cdot \mathcal{I}_K)/\mathcal{I}_K \times \ker(T_{N/K}).$ Since $(\mathcal{P}_{N/K} \cdot \mathcal{I}_K)/\mathcal{I}_K \leq \mathcal{I}_{N/K}/\mathcal{I}_K$ is an actual inclusion, the factorization of $\mathcal{I}_{N/K}/\mathcal{I}_K$ in formula (2.2) restricts to a factorization

(3.2)

 $(\mathcal{P}_{N/K} \cdot \mathcal{I}_K)/\mathcal{I}_K \simeq (\mathcal{P}_{L/F}/\mathcal{P}_F) \times \Big(\ker(N_{N/L}) \cap \big((\mathcal{P}_{N/K} \cdot \mathcal{I}_K)/\mathcal{I}_K \big) \Big),$

provided that F is a field with trivial class group $\operatorname{Cl}(F)$, that is $\mathcal{I}_F = \mathcal{P}_F$. Combining the formulas (3.1) and (3.2) for the rational base field $F = \mathbb{Q}$, we obtain:

Theorem 3.1. There is a **trichotomic decomposition** of the space $\mathcal{P}_{N/K}/\mathcal{P}_K$ of differential principal factors of N/K into three components, (3.3)

 $\mathcal{P}_{N/K}/\mathcal{P}_{K} \simeq \mathcal{P}_{L/\mathbb{Q}}/\mathcal{P}_{\mathbb{Q}} \times \left(\ker(N_{N/L}) \cap \left((\mathcal{P}_{N/K}\mathcal{I}_{K})/\mathcal{I}_{K} \right) \right) \times \ker(T_{N/K}),$ the absolute principal factors, $\mathcal{P}_{L/\mathbb{Q}}/\mathcal{P}_{\mathbb{Q}}$, of L/\mathbb{Q} , the relative principal factors, $\ker(N_{N/L}) \cap \left((\mathcal{P}_{N/K}\mathcal{I}_{K})/\mathcal{I}_{K} \right),$ of N/K, and the capitulation kernel, $\ker(T_{N/K}), \text{ of } N/K.$

3.2. Galois cohomology. For establishing a quantitative version of the qualitative formula (3.3), we suppose that N/K is a cyclic relative extension of *odd* prime degree p and we use the Galois cohomology of the unit group U_N as a module over the automorphism group $G = \text{Gal}(N/K) = \langle \sigma \rangle \simeq C_p$. In fact, we combine a theorem of Iwasawa [8] on the first cohomology H¹(G, U_N) with a theorem of Hasse [3] on the Herbrand quotient of U_N [6], and we use Dirichlet's theorem on the torsion-free unit rank of K:

 $H^{1}(G, U_{N}) \simeq (U_{N} \cap \ker(N_{N/K}))/U_{N}^{\sigma-1} \simeq \mathcal{P}_{N/K}/\mathcal{P}_{K} \text{ (Iwasawa)},$ $\#H^{0}(G, U_{N}) = (U_{K} : N_{N/K}(U_{N})) = p^{U}, \ 0 \leq U \leq r_{1} + r_{2} - \theta,$ $\frac{\#H^{1}(G, U_{N})}{\#H^{0}(G, U_{N})} = [N : K] = p \quad \text{(Hasse)},$

where (r_1, r_2) is the signature of K, and $\theta = 0$ if K contains the *p*th roots of unity, but $\theta = 1$ else.

Corollary 3.1. If N/K is cyclic of odd prime degree $p \ge 3$, then the \mathbb{F}_p -dimensions of the spaces of differential principal factors in Theorem 3.1 are connected by the **funda**mental equation

 $(3.4) \qquad U+1 = A + R + C, \quad where$ $A := \dim_{\mathbb{F}_p}(\mathcal{P}_{L/\mathbb{Q}}/\mathcal{P}_{\mathbb{Q}}),$ $R := \dim_{\mathbb{F}_p}\left(\ker(N_{N/L}) \cap \left((\mathcal{P}_{N/K}\mathcal{I}_K)/\mathcal{I}_K\right)\right), \text{ and }$ $C := \dim_{\mathbb{F}_p}(\ker(T_{N/K})).$

Corollary 3.2. Under the assumptions $p \ge 3$, q = 2 of Theorem 2.1, in particular for N dihedral of degree 2p, the dimensions in Corollary 3.1 are bounded by the following estimates

(3.5)

 $0 \leq A \leq \min(n+s,m), \ 0 \leq R \leq \min(s,m), \ 0 \leq C \leq \min(\varrho_p,m),$ where $m := 1 + r_1 + r_2 - \theta$ is the cohomological maximum of U + 1, and $\varrho_p := \operatorname{rank}_p(\operatorname{Cl}(K))$. In particular, m = 2 for real quadratic K with $(r_1, r_2) = (2, 0), \ \theta = 1,$ m = 1 for imaginary quadratic K $(\neq \mathbb{Q}(\sqrt{-3}) \text{ if } p = 3)$ with $(r_1, r_2) = (0, 1), \ \theta = 1.$

Remark 3.1. For N pure metacyclic of degree (p-1)p, the space $\mathcal{P}_{L/\mathbb{Q}}/\mathcal{P}_{\mathbb{Q}}$ of absolute principal factors contains the onedimensional subspace $\Delta = \langle \sqrt[p]{D} \rangle$ generated by the radicals, and thus

 $1 \leq A \leq \min(t, m), \ 0 \leq R \leq m-1, \ 0 \leq C \leq \min(\varrho_p, m-1),$ where $m = \frac{p+1}{2}$ for cyclotomic K with $(r_1, r_2) = (0, \frac{p-1}{2}).$ In particular C = 0 for a regular prime p, for instance p < 37.

Remark 3.2. We mentioned that in general $\mathcal{P}_{N/K}/\mathcal{P}_K$ cannot be viewed as a subspace of $\mathcal{I}_{N/K}/\mathcal{I}_K$. In fact, for a dihedral field N which is unramified with conductor f = 1 over K, we have n = s = 0, consequently A = R = 0, and $\mathcal{I}_{N/K}/\mathcal{I}_K = 0$ is the nullspace, whereas $\mathcal{P}_{N/K}/\mathcal{P}_K = \ker(T_{N/K})$ is at least one-dimensional, according to Hilbert's Theorem 94 [7], and at most two-dimensional, by the estimate $C \leq \min(\varrho_p, m) \leq \min(\varrho_p, 2) \leq 2$.

3.3. Differential principal factorization (DPF) types of complex dihedral fields. Let p be an odd prime. We recall the classification theorem for *pure cubic* fields L = $\mathbb{Q}(\sqrt[3]{D})$ and their Galois closure $N = \mathbb{Q}(\zeta_3, \sqrt[3]{D})$, that is the metacyclic case p = 3. The *coarse* classification of N according to the cohomological invariants U and A alone is closely related to the classification of simply real dihedral fields of degree 2p with any odd prime p by Nicole Moser [19, Dfn. III.1 and Prop. III.3, p. 61], as illustrated in Figure 1. The coarse types α and β are completely analogous in both cases. The additional type γ is required for pure cubic fields, because there arises the possibility that the primitive cube root of unity ζ_3 occurs as relative norm $N_{N/K}(Z)$ of a unit $Z \in U_N$. Due to the existence of radicals in the pure cubic case, the \mathbb{F}_{p} dimension A of the vector space of absolute DPF exceeds the corresponding dimension for simply real dihedral fields by one.

Download of this presentation from http://www.algebra.at/DCM2@ICANTA2019Oujda.pdf

The fine classification of N according to the invariants U, A, R and C in the simply real dihedral situation with U+1 = A+R+C splits type α with A = 0 further in type α_1 with C = 1(capitulation) and type α_2 with R = 1 (relative DPF). In the pure cubic situation, however, no further splitting occurs, since C = 0, and R = U + 1 - A is determined uniquely by U and A already. We oppose the two classifications in the following theorems.

Theorem 3.2. Each simply real dihedral field N/\mathbb{Q} of absolute degree $[N : \mathbb{Q}] = 2p$ with an odd prime p belongs to precisely one of the following 3 differential principal factorization types, in dependence on the triplet (A, R, C):

Type	U	U+1 = A + R + C	A	R	C
α_1	0	1	0	0	1
α_2	0	1	0	1	0
β	0	1	1	0	0

Theorem 3.3. Each pure metacyclic field $N = \mathbb{Q}(\zeta_3, \sqrt[3]{D})$ of absolute degree $[N : \mathbb{Q}] = 6$ with cube free radicand $D \in \mathbb{Z}, D \ge 2$, belongs to precisely one of the following 3 differential principal factorization types, in dependence on the invariant U and the pair (A, R):

Type	U	U+1 = A + R	A	R
α	1	2	1	1
β	1	2	2	0
γ	0	1	1	0

Daniel C. Mayer (Austrian Science Fund), Differential principal factors, ICANTA Oujda 2019

3.4. Differential principal factorization (DPF) types of real dihedral fields. Now we state the classification theorem for *pure quintic* fields $L = \mathbb{Q}(\sqrt[5]{D})$ and their Galois closure $N = \mathbb{Q}(\zeta_5, \sqrt[5]{D})$, that is the metacyclic case p = 5. The *coarse* classification of N according to the invariants U and A alone is closely related to the classification of *totally real dihedral* fields of degree 2p with any odd prime p by Nicole Moser [19, Thm. III.5, p. 62], as illustrated in Figure 2. The coarse types α , β , γ , δ , ε are completely analogous in both cases. Additional types ζ , η , ϑ are required for pure quintic fields, because there arises the possibility that the primitive fifth root of unity ζ_5 occurs as relative norm $N_{N/K}(Z)$ of a unit $Z \in U_N$. Due to the existence of radicals in the pure quintic case, the \mathbb{F}_p -dimension A of the vector space of absolute DPF exceeds the corresponding dimension for totally real dihedral fields by one (see Remark 3.1).

Download of this presentation from http://www.algebra.at/DCM2@ICANTA2019Oujda.pdf

The *fine* classification of N according to the invariants U, A, R and C in the totally real dihedral situation with U + 1 = A + R + C splits type α with U = 1, A = 0 further in type α_1 with C = 2 (double capitulation), type α_2 with C = R = 1 (mixed capitulation and relative DPF), type α_3 with R = 2 (double relative DPF), type β with U = A = 1 in type β_1 with C = 1 (capitulation), type β_2 with R = 1 (relative DPF), and type δ with U = A = 0 in type δ_1 with C = 1 (capitulation), type δ_2 with R = 1 (relative DPF).

Theorem 3.4. Each totally real dihedral field N/\mathbb{Q} of absolute degree $[N : \mathbb{Q}] = 2p$ with an odd prime p belongs to precisely one of the following 9 differential principal factorization types, in dependence on the invariant U and the triplet (A, R, C).

Type	U	U+1 = A + R + C	A	R	C
α_1	1	2	0	0	2
α_2	1	2	0	1	1
α_3	1	2	0	2	0
β_1	1	2	1	0	1
β_2	1	2	1	1	0
γ	1	2	2	0	0
δ_1	0	1	0	0	1
δ_2	$\left \begin{array}{c} 0 \end{array} \right $	1	0	1	0
ε	0	1	1	0	0

Proof. Consequence of the Corollaries 3.1 and 3.2. See also [19, Thm. III.5, p. 62] and [11]. \Box

In the pure quintic situation with U + 1 = A + I + R [17], however, we arrive at the following theorem.

Theorem 3.5. Each pure metacyclic field $N = \mathbb{Q}(\zeta_5, \sqrt[5]{D})$ of absolute degree $[N : \mathbb{Q}] = 20$ with 5-th power free radicand $D \in \mathbb{Z}$, $D \ge 2$, belongs to precisely one of the following 13 differential principal factorization types, in dependence on the invariant U and the triplet (A, I, R).

Type	U	U+1 = A + I + R	A	Ι	R
α_1	2	3	1	0	2
α_2	2	3	1	1	1
$lpha_3$	2	3	1	2	0
β_1	2	3	2	0	1
β_2	2	3	2	1	0
γ	2	3	3	0	0
δ_1	1	2	1	0	1
δ_2	1	2	1	1	0
ε	1	2	2	0	0
ζ_1	1	2	1	0	1
ζ_2	1	2	1	1	0
η	1	2	2	0	0
ϑ	0	1	1	0	0

The types δ_1 , δ_2 , ε are characterized additionally by $\zeta_5 \notin N_{N/K}(U_N)$, and the types ζ_1 , ζ_2 , η by $\zeta_5 \in N_{N/K}(U_N)$. *Proof.* The proof is given in [17, Thm. 6.1].

References

- P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), no. 2, 226–239.
- [2] S. M. Chang and R. Foote, Capitulation in class field extensions of type (p, p), Can. J. Math. 32 (1980), No.5, 1229–1243.
- [3] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil Ia: Beweise zu Teil I, Jber. der DMV 36 (1927), 233– 311.
- [4] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Zeitschr. 31 (1930), 565–582.
- [5] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1–25.
- [6] J. Herbrand, Sur les théorèmes du genre principal et des idéaux principaux, Abh. Math. Sem. Hamburg 9 (1932), 84–92.
- [7] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jber. der DMV 4 (1897), 175– 546.
- [8] K. Iwasawa, A note on the group of units of an algebraic number field, J. Math. Pures Appl. (9) 35 (1956), 189–192.
- [9] MAGMA Developer Group, MAGMA Computational Algebra System, Version 2.24-5, Sydney, 2019, (http://magma.maths.usyd.edu.au).
- [10] D. C. Mayer, Differential principal factors and units in pure cubic number fields, Preprint, Dept. of Math., Univ. Graz, 1989.
- [11] D. C. Mayer, *Classification of dihedral fields*, Preprint, Dept. of Comp. Science, Univ. of Manitoba, 1991.
- [12] D. C. Mayer, List of discriminants $d_L < 200\,000$ of totally real cubic fields L, arranged according to their multiplicities m and conductors f, Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, 1991, Austrian Science Fund (FWF), Project Nr. J 0497-PHY.
- [13] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp. 58 (1992), No. 198, 831–847, supplements section S55–S58.
- [14] D. C. Mayer, Discriminants of metacyclic fields, Canad. Math. Bull. 36 (1) (1993), 103–107.
- [15] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), No. 2, 471–505, DOI 10.1142/S179304211250025X.
- [16] D. C. Mayer, Quadratic p-ring spaces for counting dihedral fields, Int. J. Number Theory 10 (2014), No. 8, 2205–2242, DOI 10.1142/S1793042114500754.
- [17] D. C. Mayer, Differential principal factors and Polya property of pure metacyclic fields, arXiv:1812.02436v1 [math.NT], 2018.
- [18] D. C. Mayer, Tables of pure quintic fields, arXiv:1812.02440v1 [math.NT], 2018.
- [19] N. Moser, Unités et nombre de classes d'une extension Galoisienne diédrale de Q, Abh. Math. Sem. Univ. Hamburg 48 (1979), 54–75.
- [20] A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys. 40 (1933), 211–222.
- [21] G. F. Voronoi, *Ob odnom obobshchenii algorifma nepreryvnykh drobei* (On a generalization of the algorithm of continued fractions), Doctoral Dissertation, 1896, Warsaw (Russian).