Cubic Field Extensions



1. Absolute Cubic Extensions L | Q

of the rational number field Q

*
1.0. Introduction
1.0.1. Polynomials
1.0.1.1. Polynomials of the third degree as generators of cubic fields
1.0.1.2. Interactive test of a tracefree cubic polynomial for reducibility
1.0.2. Discriminants
1.0.2.1. How many fields share a common discriminant? (Multiplicities)
1.0.2.2. Discriminantal multiplicities of p-ring class fields (2002/12/21)

*
1.1. Non-Galois Extensions
1.1.0. Units and ideal classes
1.1.0.1. Types of class number formulas, according to the unit index of SCHOLZ
1.1.1. Totally real cubic fields
1.1.1.1. Principal factorization types
1.1.1.2. Extension of ANGELL's 1975 table in 1991
1.1.1.3. Verification of a 1933 conjecture of SCHOLZ in 1991
1.1.1.4. Lattice geometry (2002/03/23)
1.1.2. Pure cubic fields
1.1.2.1. Principal factorization types
1.1.2.2. Principal factors
1.1.2.3. Algorithm of VORONOI
1.1.2.4. Errors in WILLIAMS' 1982 table detected in 1987, 1989
1.1.2.5. Ordering by ascending conductors (2002/03/03)
1.1.2.6. Ordering by ascending radicands (2002/03/04)
1.1.2.7. Families (2002/03/18)
1.1.2.8. Exotic fields (2002/03/20)
1.1.3. Complex cubic fields
1.1.3.1. Principal factorization types
1.1.3.2. Errors in FUNG's table detected in 1990
1.1.3.3. Fields generated by IIMURA's polynomials
1.1.4. Minimal occurrence
1.1.4.1. Discriminants of complex and totally real cubic fields (2002/12/26)
1.1.5. Letter archive
1.1.5.1. Minimal occurrence of cubic multiplicities (BELABAS) (2002/02/05)

*
1.2. Galois Extensions
1.2.1. Cyclic cubic fields
1.2.1.1. Class numbers (2002/04/01)
1.2.1.2. Yuck! Here they are -- the Cyclic Cubic Monsters! (2002/04/03)
1.2.1.3. The leading table (2002/04/08)
1.2.1.4. Lattice geometry (2002/04/15)
1.2.1.5. Quadruplets (2002/04/17)
1.2.1.6. Octuplets (2002/04/20)
1.2.1.7. DIRICHLET type lattices (2002/04/26)
1.2.1.8. VORONOI type lattices (2002/04/26)
1.2.2. Letter archive
1.2.2.1. Absolutely cyclic cubic fields (2001/12/24)




2. Relative Cubic Extensions N | K

of various base fields K

*
2.1. Quadratic base fields K
2.1.1. Unramified cubic extensions
2.1.1.1. Descending central series of 2-stage metabelian 3-groups (NEBELUNG) (2003/09/16)
2.1.1.2. Start of the real capitulation project (2006/04/28)
2.1.1.3. Continuation of the complex and real capitulation projects (2007/08/20)
2.1.1.4. Summary of research results 2008 concerning principalization (2008/02/05)
2.1.1.5. Principalization types of 2-stage metabelian 3-groups (2009/08/19)
2.1.2. Ramified cubic extensions
2.1.2.1. Counting p-ray class fields (2002/12/21)
2.1.2.2. Discriminantal multiplicities of p-ring class fields (2002/12/21)
2.1.2.3. Rank 2 discriminants d = -2069688,-128451,-42591,-8751 (2002/12/02)
2.1.2.4. Rank 3 discriminant d = -4447704 (2002/12/22)
2.1.2.5. Rank 3 discriminants d = -3321607,-3640387 of DIAZ and BUELL (2002/12/30)
2.1.3. Letter archive
2.1.3.1. First occurrence of cubic discriminants with 3-defect 2 (BELABAS) (2001/07/28)
2.1.3.2. QUER's complex quadratic field with 3-rank 5 (2002/01/29)
2.1.3.3. Multiplicities of cubic discriminants (2002/02/05)
2.1.3.4. Minimal occurrence of cubic multiplicities (BELABAS) (2002/02/05)
2.1.3.5. Cubic discriminants with irregular conductors (BELABAS) (2002/02/08)
2.1.3.6. Sextic fields associated with quadratic 3-ray class groups (2002/02/11)
2.1.3.7. Sextic normal fields with cyclic or dihedral Galois group (2002/02/22)

*
2.2. Bicyclic biquadratic base fields K
2.2.1. Cubic extensions unramified outside of 3
2.2.1.1. Connections between cubic and dual quadratic fields (SCHOLZ)
2.2.1.2. Class rank configurations in SCHOLZ's mirror theorem

*
2.3. Cyclic cubic base fields K
2.3.1. Unramified cubic extensions
2.3.1.1. Capitulation in unramified cubic extensions of cyclic cubic fields (AYADI) (2002/07/18)
2.3.1.2. Ambiguous principal ideals in cyclic cubic fields (2002/09/18)
2.3.1.3. Descending central series of 2-stage metabelian 3-groups (DERHEM) (2003/02/08)

*
2.4. Sextic S3 base fields K
2.4.1. Unramified cubic extensions
2.4.1.1. Pure cubic fields with 3-class rank 0 (HONDA) (2002/10/02)
2.4.1.2. Capitulation in unramified cubic extensions of the Galois closure of pure cubic fields (ISMAILI) (2002/10/10)
2.4.1.3. Pure cubic fields with 3-class rank 1, 2, or 3 (EL MESAOUDI) (2002/10/20)
2.4.1.4. Inverse population of pure cubic principal factorization types (2002/10/22)
2.4.1.5. Unexplored pure cubic fields with 3-class rank r >= 2 (2002/10/26)
2.4.1.6. Descending central series of 2-stage metabelian 3-groups (DERHEM) (2003/11/23)

*
Web master's e-mail address:
contact@algebra.at
*

Back to Algebra