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INTRODUCTION.

• The key for determining the Galois group

G := G(∞)
p F = Gal(F (∞)

p /F )

of the unramified Hilbert p-class field tower F
(∞)
p , i.e. the

maximal unramified pro-p extension, of an algebraic number
field F is the Artin pattern AP(G) combined with bounds
for the relation rank d2G.
G is briefly called the p-tower group of F .

•My principal goal is to draw the attention of the audience to
the striking novelty of three-stage towers of p-class fields
over quadratic, cubic and quartic number fields F , discovered
by myself in the past four years, partially in cooperation with
M. R. Bush (WLU, VA) and M. F. Newman (ANU, ACT).

• This lecture can be downloaded from
http://www.algebra.at/ANCI2016DCM.pdf

• It is an updated and compact version of my article

[9] D. C. Mayer,
Recent progress in determining p-class field towers,
Gulf J. Math. (Dubai, UAE),
arXiv: 1605.09617v1 [math.NT] 31 May 2016.
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1. The Hilbert p-class field tower

Assumptions: p . . . a prime number,
F . . . an algebraic number field,
ClpF := SylpClF . . . the p-class group of F .

Definition. For n ≥ 0, the nth Hilbert p-class field F
(n)
p is

the maximal unramified Galois extension of F with group

Gn
pF := Gal

(
F (n)
p /F

)
having derived length dl(Gn

pF ) ≤ n and order a power of p.

The Hilbert p-class field tower F
(∞)
p over F is the maximal

unramified pro-p extension of F and has the Galois group

G∞p F := Gal
(
F (∞)
p /F

)
' lim←−

n≥0
Gn
pF.

F ≤ F
(1)
p ≤ F

(2)
p ≤ · · · ≤ F

(n)
p ≤ · · · ≤ F (∞)

p

G1
pF

G2
pF

2nd p-class group

Gn
pF

nth p-class group

G := G∞p F
p-tower group
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The nth stage Gn
pF of the p-class tower arises as the nth

derived quotient G/G(n) of the p-tower group G, for n ≥ 1.

In particular, for n = 2, the second p-class group
M := G2

pF ' G/G(2)

can be viewed as a two-stage approximation of G.

F ≤ F
(1)
p ≤ F

(2)
p ≤ · · · ≤ F

(n)
p ≤ · · · ≤ F (∞)

p

G/G′

G2
pF ' G/G′′

2nd p-class group

Gn
pF ' G/G(n)

nth p-class group

G = G∞p F
p-tower group

Definition. The derived length dl(G) of the p-tower group
G = G∞p F is called the length `pF of the p-class tower of F .

When do we consider the p-class tower F
(∞)
p as “known”?

Is it sufficient to determine its length `pF ?

No, not at all! The length alone is a poor amount of informa-
tion. According to my conviction, we are not done before we
can give an explicit pro-p presentation of the p-tower group

G = G∞p F = Gal
(
F (∞)
p /F

)
.
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An equivalent inductive definition of the p-class tower:

The tower F
(∞)
p :=

⋃
i≥0 F

(i)
p arises recursively from the base

field F
(0)
p := F by the successive construction of maximal

abelian unramified p-extensions F
(n)
p :=

(
F

(n−1)
p

)(1)
p

, n ≥ 1.

By the Artin reciprocity law of class field theory [1], the

relative Galois group Gal
(
F

(n)
p /F

(n−1)
p

)
is isomorphic to the

(abelian! ) p-class group ClpF
(n−1)
p , for each n ≥ 1.

In particular, for n = 1, we have the well-known fact that the
first p-class group is isomorphic to the ordinary p-class group

G1
pF = Gal

(
F (1)
p /F

)
' ClpF.

In particular, for n = 2, the second p-class group

M = Gal
(
F

(2)
p /F

)
has an abelian commutator subgroup

M′ = Gal
(
F

(2)
p /F

(1)
p

)
' ClpF

(1)
p

and is therefore metabelian.
The abelianization is

M/M′ ' Gal
(
F (1)
p /F

)
' ClpF.

Similarly, the abelianization of the p-tower group G is

G/G′ = Gal
(
F (∞)
p /F

)
/Gal

(
F (∞)
p /F (1)

p

)
' Gal

(
F (1)
p /F

)
' ClpF

and consequently G is a finitely generated pro-p group.
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2. Infinite p-class towers

Let G be a finitely generated pro-p group with generator rank
d1 := dimFp H1(G,Fp) and relation rank d2 := dimFp H2(G,Fp).
Theorem (Golod, Shafarevich, 1964 [2]).

If G is finite, then d2 >
(
d1−1
2

)2
.

Theorem (Refinement by Vinberg, Gaschütz, 1965 [3]).

#G <∞ ⇒ d2 >
(d1)

2

4 , resp. d2 ≤ (d1)
2

4 ⇒ #G =∞.

Let 1 → R → F → G → 1 be a presentation of G with a
free pro-p group F such that d1F = d1G, and suppose that
R ⊂ Fn for a term of the Zassenhaus filtration (Fn)n≥1 of F .

Theorem (Refinement by Koch, Venkov, 1975 [4]).

If G is finite, then d2 >
(d1)

n

nn · (n− 1)n−1.

Corollary (Koch, Venkov, 1975 [4]).
Let p ≥ 3 be odd, then
a complex quadratic field F = Q(

√
d) with p-class rank %p ≥ 3

has an infinite p-class tower with `pF =∞.

Proof. Since F has Dirichlet unit rank r = 0, the p-tower
group G = G∞p F has a balanced presentation with d2 = d1
and R ⊂ F3. Thus, a sufficient condition for `pF = ∞ is

d1 ≤ (d1)
3

33
· 22, i.e. %p = d1 ≥

√
27
4 = 3

2

√
3 ≈ 2.598. �

Example.
d = −4 447 704 ⇒ Cl3F ' (3, 3, 3) ⇒ `3F = ∞. However,
we are far from knowing a pro-3 presentation of G = G∞3 F .
We only have the lower bound #M ≥ 317 for M = G/G′′.
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3. The relation rank of the p-tower group

Theorem (I. R. Shafarevich, 1964 [5]).
Let p ≥ 2 be a prime number,
and K be an algebraic number field with signature (r1, r2)
and torsion free Dirichlet unit rank r = r1 + r2 − 1,
ζ a primitive pth root of unity,
G = G∞p (K) = Gal(F∞p (K)|K) the Galois group of the
maximal unramified pro-p extension F∞p (K) of K,

d1 = dimFp H1(G,Fp) the generator rank of G,
d2 = dimFp H2(G,Fp) the relation rank of G. Then

d1 ≤ d2 ≤ d1 + r + θ, where θ =

{
0 if ζ 6∈ K,
1 if ζ ∈ K.

Corollary. K = Q(
√
d) quadratic field with discriminant d,

G = G∞p (K) = Gal(F∞p (K)|K)
the p-class tower group of K. Then
d2 = d1 if (d < 0 and p ≥ 3),

d1 ≤ d2 ≤ d1 + 1 if either (d < 0 and p = 2) or (d > 0 and p ≥ 3),

d1 ≤ d2 ≤ d1 + 2 if (d > 0 and p = 2).

[5] I. R. Shafarevich, Extensions with prescribed ramification

points, Publ. Math., Inst. Hautes Études Sci. 18 (1964),
71–95 (Russian). English transl. by J. W. S. Cassels:
Am. Math. Soc. Transl., II. Ser., 59 (1966), 128–149.
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4. Leaving the realm of class field theory

p . . . a prime number,
F . . . an algebraic number field,
E/F . . . an unramified abelian p-extension,
ClpE . . . the p-class group of E,
TF,E : ClpF → ClpE, a · PF 7→ (aOE) · PE
. . . the transfer of p-classes from F to E.

We translate TF,E from number theory to group theory by
entering the system of metabelian unramified extensions [6]:

System of abelian

unramified extensions

System of metabelian

unramified extensions

F ≤ E ≤ F
(1)
p ≤ E

(1)
p ≤ F

(2)
p

l l l
Galois correspondence

l l

M
‖

G
(
F

(2)
p /F

) D H
‖

G
(
F

(2)
p /E

) D M′

‖
G
(
F

(2)
p /F

(1)
p

)D H ′

‖
G
(
F

(2)
p /E

(1)
p

)D 1

abelian quotient

G
(
E

(1)
p /E

)
' ClpE ' H/H ′
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Let H := Gal(F
(2)
p /E), then H ′ := Gal(F

(2)
p /E

(1)
p ), and the

p-class transfer TF,E is connected with the Artin transfer TM,H

by two applications of the Artin reciprocity map:

TF,E
ClpF −→ ClpE

Artin isomorphism l /// l Artin isomorphism

M/M′ −→ H/H ′

TM,H

In particular, we have
isomorphic domains, ClpF 'M/M′,
isomorphic kernels, kerTF,E ' kerTM,H ,
isomorphic targets, ClpE ' H/H ′.

Definition. Recall that the Artin transfer [6] from a group
G to a subgroup H ≤ G with finite index n := (G : H) is
defined with the aid of the permutation π ∈ Sn of a transversal

G =
⋃̇n

i=1 `i ·H induced by the action of an element x ∈ G:

TG,H : G/G′ → H/H ′, x ·G′ 7→
n∏
i=1

`−1π(i)x`i ·H
′,

where x`i ·H = `π(i) ·H , for each 1 ≤ i ≤ n.

[6] E. Artin, Idealklassen in Oberkörpern und allgemeines Rezi-
prozitätsgesetz, Abh. Math. Sem. Univ. Hamburg 7 (1929),
46–51.
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5. The Artin pattern

Assumptions: p . . . a prime number,
F . . . an algebraic number field,
G . . . a pro-p group or a finite p-group,
X . . . a placeholder, either X = F or X = G.

Definition. We call

τ0X :=

{
ClpF if X = F,

G/G′ if X = G,

bottom, resp. top, layer of abelian quotient invariants of X .

Suppose that #τ0X = pt for some integer t ≥ 0,
and let 0 ≤ n ≤ t be an integer.

Definition. The finite set

LyrnX :=

{
{F ≤ E ≤ F

(1)
p | [E : F ] = pn} if X = F,

{G′ ≤ H EG | (G : H) = pn} if X = G,

is called the nth layer of abelian unramified p-extensions,
resp. of intermediate normal subgroups, of X .

Definition. For any 0 ≤ n ≤ t and Y ∈ LyrnX , the
mapping TX,Y : τ0X → τ0Y ,{

x · PX 7→ (xOY ) · PY if X = F,

x ·X ′ 7→
∏n

i=1 `
−1
π(i)x`i · Y

′ if X = G,

is called the p-class transfer, resp. the Artin transfer [6],
from X to Y .
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Definition. We call

τn(X) := (τ0Y )Y ∈LyrnX , for 0 ≤ n ≤ t,
the components of the multi-layered
Transfer Target Type (TTT) τ (X) := [τ0X ; . . . ; τtX ],

κn(X) := (kerTX,Y )Y ∈LyrnX , for 0 ≤ n ≤ t,
the components of the multi-layered
Transfer Kernel Type (TKT) κ(X) := [κ0X ; . . . ;κtX ].

The pair AP(X) := (τ (X),κ(X))
is called the abelian Artin pattern of X .

Definition. The index-p abelianization data (IPAD) of X
is a first order approximation of the multi-layered TTT,

τ (1)X := [τ0X ; τ1X ].

A generalization to non-abelian unramified extensions is given
recursively by the iterated IPAD of order n ≥ 2,

τ (n)X := [τ0X ; (τ (n−1)Y )Y ∈Lyr1X ],

formally supplemented by τ (0)X := τ0X .

Definition. The cover of a finite metabelian p-group M is
defined as the set

cov(M) := {G | #G <∞, G/G′′ 'M},
and the total cover of M arises by dropping the finiteness
condition:

covtotM := {G | G/G′′ 'M}.
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Theorem.
(Uniformity of the Artin pattern on the total cover)
If M is a finite metabelian p-group, then

(∀G ∈ covtotM) AP(G) = AP(M).

That is, any pro-p group G shares a common abelian Artin
pattern with its metabelianization M = G/G′′.

Corollary.
(Uniformity of the Artin pattern of all higher p-class groups)
All higher p-class groups Gn

pF of a number field F share a

common abelian Artin pattern with M := G2
pF ,

(∀n ≥ 2) AP(Gn
pF ) = AP(M).

Proof. Gn
pF/

(
Gn
pF
)′′ ' G2

pF , and thus Gn
pF ∈ covtotG

2
pF ,

for any n ≥ 2. �

Theorem.
(Coincidence of the Artin pattern of a field F and of G2

pF )
Each number field F shares a common abelian Artin pattern
with its second p-class group M := G2

pF ,

AP(F ) = AP(M).

Corollary.
(Coincidence of the IPAD of a field F and of G2

pF )
Each number field F shares a common IPAD with its second
p-class group G2

pF ,

τ (1)F = τ (1)G2
pF .

Proof. AP(F ) = (τ (F ),κ(F )) and τ (F ) = [τ0F ; . . . ; τtF ]
contains τ (1)F = [τ0F ; τ1F ]. �
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Iterated IPADs of increasing order approximate the complete
information on the p-tower group G = G∞p F .

Successive Approximation Theorem.
(Coincidence of the IPAD of order m of a field F and of all
groups Gn

pF with n ≥ m + 1)
For any order m ≥ 0, the number field F and all higher p-class
groups Gn

pF with n ≥ m + 1 share a common iterated IPAD
of order m,

(∀n ≥ m + 1) τ (m)F = τ (m)Gn
pF .

Corollary.
(Coincidence of all iterated IPADs of a field F and of G∞p F )
The number field F shares all iterated IPADs with its p-tower
group G = G∞p F ,

(∀m ≥ 0) τ (m)F = τ (m)G∞p F .

The length of the p-class tower can be determined by repeated
applications of the following criterion.

Stage Separation Conjecture.
(Proving length bigger than m by means of IPAD of order m)

(∀m ≥ 0) `pF > m⇐⇒ τ (m)F > τ (m)Gm
p F .

That is, the iterated IPAD of order m indicates when the p-
class tower has more than m stages.

Proof. of “⇐=” by contraposition: `pF ≤ m =⇒
F

(m)
p = F

(m+1)
p =⇒ τ (m)F = τ (m)Gm+1

p F = τ (m)Gm
p F . �
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Our aim is to give an explicit pro-p presentation of the p-tower
group of F ,

G = G∞p F = Gal
(
F (∞)
p /F

)
.

For this purpose, we proceed in several steps:

(1) We compute the p-class groups ClpE and the p-capitulation
kerTF,E of all unramified cyclic extensions E/F of rela-
tive degree p.

(2) With the aid of Artin’s reciprocity law, we interpret this
number theoretic information (τ1F,κ1F ) as group the-
oretic invariants (τ1M,κ1M) of the metabelian second
p-class group of F ,

M = G2
pF = Gal

(
F (2)
p /F

)
.

(3) By a search for the assigned invariants in the descendant
tree T R with root R ' ClpF we find a finite batch of
contestants for M, using Thm. M as break-off condition.

(4) We construct small members of the cover cov(M) of M
which satisfy the Shafarevich inequality d2 ≤ d1 + r + θ
for the relation rank d2 = d2(G) in dependence on the
generator rank d1 = d1(G), the Dirichlet unit rank r, and
the invariant θ.

Theorem M. (Monotony of the Artin pattern on trees)
Let T R be the descendant tree with a finite non-trivial p-
group as its root R > 1 and let G→ πG be a directed edge of
the tree. Then the abelian Artin pattern AP = (τ,κ) satisfies
the following monotonicity relations (in componentwise sense)

τ (G) ≥ τ (πG),

κ(G) ≤ κ(πG).
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6. Contestants for the second p-class group

τ0 . . . finite abelian p-group with generator rank d ≥ 2,

τ1 . . . family (τ1(i))1≤i≤n of n := pd−1
p−1 abelian type invariants.

Definition. By Cnt2p(τ0, τ1) we denote the set of all (iso-
morphism classes of) finite metabelian p-groups M such that
τ0M = M/M′ ' τ0 and τ1M = (H/H ′)H∈Lyr1M ' τ1.

Conjecture. (Finiteness of the batch of contestants)
Cnt2p(τ0, τ1) is a finite set.

Remark. Note that Cnt2p(τ0, τ1) = ∅, when τ1 is malformed.

Theorem 1. p = 3, τ0 ' (3, 3) =⇒ #Cnt23(τ0, τ1) <∞.

Theorem 2. p = 2, τ0 ' (2, 2, 2) =⇒ #Cnt22(τ0, τ1) <∞.

The general Conjecture holds if the following Principle is true.

Polarization Principle. There exist a few components of a
non-malformed family τ1 which determine the nilpotency class
c := cl(M) and the coclass r := cc(M) of a finite metabelian
p-group M with τ1M = (H/H ′)H∈Lyr1M ' τ1.

Proof of Theorem 1, resp. 2, is based on Theorem 3, resp. 4.

Theorem 3. (Bipolarization) p = 3, and τ0 ' (3, 3) =⇒
#τ1(1) = 3c−k with 0 ≤ k ≤ 1, and #τ1(2) = 3r+1.

Theorem 4. (Unipolarization with independent factors)
p = 2, and τ0 ' (2, 2, 2) =⇒ τ1(1) ' (3c, 3r−1).
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7. The first 3-class towers of length 3

Notation. Logarithmic type invariants of abelian 3-groups,
for instance (21)=̂(9, 3), (32)=̂(27, 9), and (43)=̂(81, 27).

Let F = Q(
√
d) be an imaginary quadratic number field,

with 3-class group Cl3F ' (3, 3), and
E1, . . . , E4 be the unramified cyclic cubic extensions of F .

Theorem. Suppose the capitulation of 3-classes of F in
E1, . . . , E4 is of type κ1F ∼ (1,2,3, 1) (called type E.8).
Assume further that the 3-class groups of E1, . . . , E4 are of
type τ1F ∼ [T1, 21, 21, 21], where T1 ∈ {32, 43, 54}.
Then the length of the 3-class tower of F is `3F = 3.

Proof. We employ the p-group generation algorithm for search-
ing the Artin pattern AP(F ) = (τ1F,κ1F ) among the descen-
dants of the root R := C3 × C3 = 〈9, 2〉 in the tree T R.
After two steps, 〈9, 2〉 ← 〈27, 3〉 ← 〈243, 8〉, we find the next
root U5 := 〈243, 8〉 of the unique relevant coclass tree T 2U5,
using the assigned TKT E.8, κ3 = (1231), and its scaffold
TKT c.21, κ0 = (0231).
Finally, the first component T1 = τ1(1) ∈ {32, 43, 54} of the
TTT provides the break-off condition, according to Theorem
M, and we get M ' 〈2187, 304〉 = 〈729, 54〉 − #1; 4 for the
ground state T1 = (32), M ' 〈729, 54〉−#1; 3−#1; 1−#1; 2
for the 1st excited state T1 = (43), and M ' 〈729, 54〉 −
#1; 3(−#1; 1)3 − #1; 2 for the 2nd excited state T1 = (54),
where 〈729, 54〉 −#1; 3 = 〈2187, 303〉.
The situation is visualized by the next figure. �



17

Daniel C. Mayer (Austrian Science Fund), Determining p-class towers, ANCI Taza 2016
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?
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�
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�
�
�
�
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�
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�
�
�
�
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�
�
�

�
�
�
�

�
�
�
�

-9 748
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-1 088 808
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�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

-17 131

-819 743
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-30 224 744
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Proof. (continued)
The last figure, showing the second 3-class groups M, was
essentially known to J. A. Ascione in 1979, and to B. Nebelung
in 1989.

In the next three figures, which were unknown until 2012,
we present the decisive break-through establishing the first
rigorous proof for three-stage towers of 3-class fields. The
key ingredient is the discovery of periodic bifurcations in the
complete descendant tree T U5 which is of considerably higher
complexity than the coclass tree T 2U5.

For the ground state T1 = (32), the first bifurcation yields
the cover cov(M) = {M, 〈729, 54〉−#2; 4} of M ' 〈2187, 304〉
= 〈729, 54〉 − #1; 4. The relation rank d2M = 3 eliminates
M as a candidate for the 3-tower group G, according to the
Corollary of the Shafarevich Theorem, and we end up getting
G ' 〈729, 54〉 −#2; 4 = 〈6561, 622〉 with a siblings topology
E
(
1
→
)

c
(
2
←
)
E describing the relative location of M and G.

For the 1st excited state T1 = (43), the second bifurcation
yields the cover cov(M) = {M, 〈729, 54〉 − #2; 3 − #1; 1 −
#1; 2, 〈729, 54〉 −#2; 3−#1; 1−#2; 2} of M ' 〈729, 54〉 −
#1; 3 − #1; 1 − #1; 2. The relation rank d2 = 3 eliminates
M and 〈729, 54〉 − #2; 3 − #1; 1 − #1; 2 as candidates for
the 3-tower group G, according to Shafarevich, and we get
the unique G ' 〈729, 54〉 − #2; 3 − #1; 1 − #2; 2 with an

advanced fork topology E
(
1
→
) {

c
(
1
→
)}2

c
{(

2
←
)
c
(
1
←
)
c
} (

2
←
)
E

describing the relative location of M and G.
Similarly, the 2nd excited state T1 = (54) yields an advanced

fork topology E
(
1
→
) {

c
(
1
→
)}4

c
{(

2
←
)
c
(
1
←
)
c
}2 ( 2

←
)
E. �
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Order

243 35

729 36

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

?

Symmetric topology symbol (ground state):

Leaf︷ ︸︸ ︷
E

(
1

→

) Fork︷︸︸︷
c

Leaf︷ ︸︸ ︷(
2

←

)
E

Transfer kernel types:

E.8: κ3 = (1231), c.21: κ0 = (0231)

Minimal discriminant:
−34 867

〈8〉

〈54〉

1st bifurcation
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�
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�
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H
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H
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@
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2nd bifurcation
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?
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2; 1
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3rd bifurcation
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?
T 4
∗ (〈729, 54〉 −#2; 3−#1; 1−#2; 1)
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�
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S
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TKT: κ1 κ2 κ3 κ0 κ1 κ2 κ3 κ0 κ1 κ2 κ3 κ0 κ1 κ2 κ3 κ0
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Order

243 35

729 36

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

?

Symmetric topology symbol (1st excited state):

Leaf︷ ︸︸ ︷
E

(
1

→

) Mainline︷ ︸︸ ︷{
c

(
1

→

)}2 Fork︷︸︸︷
c

Trunk︷ ︸︸ ︷{(
2

←

)
c

(
1

←

)
c

} Leaf︷ ︸︸ ︷(
2

←

)
E

Transfer kernel types:

E.8: κ3 = (1231), c.21: κ0 = (0231)

Minimal discriminant:
−370 740

〈8〉

〈54〉

1st bifurcation

1; 3

1; 1
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Order

243 35

729 36

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

?

Symmetric topology symbol (2nd excited state):

Leaf︷ ︸︸ ︷
E

(
1

→

) Mainline︷ ︸︸ ︷{
c

(
1

→

)}4 Fork︷︸︸︷
c

Trunk︷ ︸︸ ︷{(
2

←

)
c

(
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)
c

}2

Leaf︷ ︸︸ ︷(
2

←

)
E

Transfer kernel types:

E.8: κ3 = (1231), c.21: κ0 = (0231)

Minimal discriminant:
−4 087 295
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General theorems on three-stage towers of 3-class fields over
quadratic fields F = Q(

√
d) whose second 3-class group M =

G2
3F belongs to a periodic sequence on a coclass tree.

Theorem E. A parametrized infinite family of fork topolo-
gies is given uniformly for the states ↑n, n ≥ 0, of any TKT
in section E by the symmetric topology symbol

Leaf︷ ︸︸ ︷
E

(
1

→

) Mainline︷ ︸︸ ︷{
c

(
1

→

)}2n Fork︷︸︸︷
c

Trunk︷ ︸︸ ︷{(
2

←

)
c

(
1

←

)
c

}n Leaf︷ ︸︸ ︷(
2

←

)
E

with scaffold type c and the following invariants:
distance d = 4n + 2, weighted distance w = 5n + 3,
class increment ∆cl = (2n + 5)− (2n + 5) = 0,
coclass increment ∆cc = (n + 3)− 2 = n + 1,
logarithmic order increment ∆lo = (3n+8)−(2n+7) = n+1.

Theorem c. A parametrized infinite family of fork topolo-
gies is given uniformly for the states ↑n, n ≥ 0, of any TKT
in section c by the symmetric topology symbol

Mainline︷ ︸︸ ︷{
c

(
1

→

)}2n Fork︷︸︸︷
c

Path︷ ︸︸ ︷{(
2

←

)
c

(
1

←

)
c

}n Leaf︷ ︸︸ ︷(
1

←

)
c

(with identical scaffold type c) and the following invariants:
distance d = 4n + 1, weighted distance w = 5n + 1,
class increment ∆cl = (2n + 5)− (2n + 4) = 1,
coclass increment ∆cc = (n + 2)− 2 = n,
logarithmic order increment ∆lo = (3n+7)−(2n+6) = n+1.
The ground state ↑0 degenerates to a child topology.
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8. Illuminating 3-class towers of length 3

Notation. Logarithmic type invariants of abelian 3-groups,
for instance (321)=̂(27, 9, 3), (221)=̂(9, 9, 3), and (412)=̂(81, 3, 3).

Let F be a number field with Cl3 ' (3, 3)
and Artin pattern AP(F ) = (τ1F,κ1F ),
where κ1F ∼ (4, 2, 3, 1) is of type G.16
and τ1F ∼ [32, 21, 21, 21] indicates the ground state.

Theorem 1. (Imaginary quadratic with fork topology)
If F = Q(

√
d), d < 0, is imaginary quadratic,

and τ (2)F = [(32; 321, (412)3), (21; 321, (31)3)3],
then M ' 〈38, 2048|2058〉,
and G ' 〈38, 619|623〉 −#1; 4−#2; 1 is a Schur σ-group.

Theorem 2. (Real quadratic with child topology)
If F = Q(

√
d), d > 0, is real quadratic,

and τ (2)F = [(32; 321, (412)3), (21; 321, (21)3)3],
resp. τ (2)F = [(32; 321, (312)3), (21; 321, (21)3)3],
then M ' 〈38, 2048|2058〉,

and G 'M−#1; 1, resp. M−#1; 2 is a strong σ-group.

Theorem 3. (Cyclic cubic with fork topology)
If F is cyclic cubic,
and τ (2)F = [(32; 221, (312)3), (21; 221, (31)3)3],
then M ' 〈37, 301|305〉,
and G ' 〈38, 619|623〉 is a weak σ-group.
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By arrows we denote projections G→M = G/G′′

from the 3-tower group G onto its metabelianization M.

729 36

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

?

Order 3n

〈54〉 uFork, type c.21
�

���
���

���
��

〈301〉
utype G.16

�
�
�

�
�
�

〈305〉
u

〈2048〉
r
〈2058〉
r

#1; 1
�
�
�
�
���

2

6

strong σ-groups
1
�
�
�
�
���

2

6

A
A
A
A
A
A
A
A
A
A
AA

〈619〉
PP

PP
PP

PP
PP

PP
PP

PP
Pi

weak σ-groups

type G.16

@
@
@
@
@
@
@
@
@
@
@@

〈623〉
PP

PP
PP

PP
PP

PP
PP

PP
Pi

#1; 4 4A
A
A
A
A
A
A
A
A
A
AA

#2; 1
Z

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z

Z
Z
Z

Z
ZZ}

Schur σ-groups

A
A
A
A
A
A
A
A
A
A
AA

1
Z

Z
Z
Z

Z
Z
Z

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

ZZ}

Topology Symbols:

G.16
(
1
→
)
c.21

(
2
←
)
G.16

G.16
(
1
←
)
G.16 G.16

(
1
←
)
G.16

G.16
(
1
→
)
G.16

(
1
→
)
c.21

(
2
←
)
G.16

(
1
←
)
G.16

(
2
←
)
G.16

Smallest concrete realizations:

F = Q(
√
d) with d = −17 131,

F = Q(
√
d) with d = +8 711 453,

F = Q(
√
d) with d = +9 448 265,

F cyclic cubic field with conductor c = 48 393.
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Theorem 4. (Real quadratic with fork topology)
If F = Q(

√
d), d > 0, is real quadratic,

and τ (2)F = [(32; 3221, (3212)3), (32; 3221, (312)3), (13; 3221, (212)3, (13)9)2],
then M ' 〈37, 64〉 −#2; 57|59−#1; 1|6,
and G ' 〈37, 64〉 −#3; 170|180−#1; 1−#1; i
with i ∈ {7, 8, 10, 12, 14, 15} is a strong σ-group.

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

?

Order 3n

〈64〉 uFork, type b.10
�
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�

�
�
�

�
�
�

�
��

#2; 57
utype d.25*
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�
�
�
�
�
�
�
�
�
��

59
u

#1; 1
u

6
u

#1; 7
. . .
15
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�
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�

5
u

7
. . .
15

�
�
�
�
�
�

5
u

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

#3; 170
PP

PP
PP

PP
PP

PP
PP

PP
Pi

type d.25*

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

180
PP

PP
PP

PP
PP

PP
PP
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#1; 1 1@
@
@
@
@
@

#1; i
H

HH
H

HH
H

HH
H

HH
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HH
H

HH
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HH
HHY

strong σ-groups

@
@
@
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@

i
H
HH
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HH

H
HH
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H
HH

HHY

Topology Symbol:

d.25∗
(
1
→
)
d.25∗

(
2
→
)
b.10

(
3
←
)
d.25∗

(
1
←
)
d.25∗

(
1
←
)
d.25∗

Smallest concrete realization:

F = Q(
√
d) with d = +8 491 713.
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9. The first 5-class tower of length 3

Notation. Logarithmic type invariants of abelian 5-groups,
for instance (12)=̂(5, 5), (13)=̂(5, 5, 5), and (213)=̂(25, 5, 5, 5).

Let F = Q(
√
d) be a real quadratic field

with 5-class group Cl5F ' (5, 5), and
E1, . . . , E6 be the unramified cyclic quintic extensions of F .

Theorem 1. Suppose the 5-capitulation of F in E1, . . . , E6

is of type κ1(F ) ∼ (1, 05).

Then the length of the 5-class tower of F is
(1) `5F = 2, if τ1(F ) ∼ [13, (12)5],
(2) `5F = 3, if τ1(F ) ∼ [213, (12)5].

(For the given TKT κ1 , the TTT τ1 determines the length.)

Examples. Among the 377 quadratic fields F = Q(
√
d)

with 5-class group Cl5F ' (12) and 0 < d < 26 695 193,
there are 57 with 5-capitulation of type κ1(F ) ∼ (1, 05).

(1) 55 of them have τ1(F ) ∼ [13, (12)5] and thus `5F = 2,
(2) only 2 have τ1(F ) ∼ [213, (12)5] and thus `5F = 3.

The discriminants of the former start with 1 167 541,
the latter have d ∈ {3 812 377, 19 621 905}.
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Corollary 1. Under the assumptions of Theorem 1,

(1) G∞5 F = G2
5F ' 〈625, 8〉 with order 54, class 3, coclass 1

and relation rank 3, if τ1(F ) ∼ [13, (12)5],

(2) G2
5F ' 〈15625, 635〉 with order 56, class 5, coclass 1 and

relation rank 4, if τ1(F ) ∼ [213, (12)5],

(3) G∞5 F = G3
5F ' 〈78125, n〉, n ∈ {361, 373, 374, 385, 386},

each with order 57, class 5, coclass 2 and relation rank 3, if
τ1(F ) ∼ [213, (12)5].

Let(
[213; 14, (212)155], [12; 14, (13)5]a, [12; 14, (21)5]b

)
with a+b = 5

denote the IPAD τ (2)F of second order of F , when `5F = 3.

(The common component (14) belongs to F
(1)
5 .)

Corollary 2. Under the assumptions of Corollary 1,
τ (2)F admits a distinction among the identifiers n.

(1) n ∈ {361, 373}, if (a, b) = (2, 3),
(2) n ∈ {374, 385}, if (a, b) = (0, 5),
(3) n = 386, if (a, b) = (1, 4).
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The following figure shows the siblings topology which de-
scribes the relative position of the second 5-class group M =
G2

5F and the 5-tower group G = G∞5 F of a real quadratic field
F = Q(

√
d) satisfying the assumptions of Theorem 1. It is a

special instance of a fork topology, characterized by a minimal
vertex distance 2.

3 125 55

15 625 56

78 125 57

?

Order 5n

πM = πG = 〈30〉 Fork, type a.1u
�

�
�

�
�
�

type a.2 u
M = 〈635〉

A
A
A
A
A
A
A
A
A
A
AA

5∗ type a.2

G = 〈361|373|374|385|386〉 strong σ-group

Topology Symbol:

a.2
(
1
→
)
a.1
(
2
←
)
a.2
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10. Action of Gal(F/Q) on Gn
pF

When F/Q is a normal extension,
then its Galois group Gal(F/Q) acts on the class group ClF
and thus also on all commutator quotients Gn

pF/
(
Gn
pF
)′ '

ClpF of higher p-class groups with p ∈ P and n ∈ N ∪ {∞}.

Let p be a prime number and d ≥ 2 be an integer.

Definition. (σ-Groups of various degrees)
A pro-p group G is called a σ-group of degree d, if it has
an automophism σ ∈ Aut(G) of order ord(σ) = d such that

the trace Tσ :=
∑d−1

i=0 σ
i ∈ Z[Aut(G)] of σ annihilates the

commutator quotient G/G′, that is,

xTσ =

d−1∏
i=0

σi(x) ∈ G′, for all x ∈ G.

If d = 2, then G is simply called a σ-group.

Definition. (Strong σ-group)
A pro-p group G is called a strong σ-group, if it possesses
an automophism σ ∈ Aut(G) of order ord(σ) = 2 such that
σ acts as the inversion x 7→ x−1 on the cohomology groups
H1(G,Fp) and H2(G,Fp).

Theorem. (Absolutely cyclic number fields)
If F/Q is a cyclic extension of degree d, then all higher p-class
groups Gn

pF with n ∈ N ∪ {∞} are σ-groups of degree d.
If d = 2, that is, when F/Q is a quadratic field, then the
p-tower group G = G∞p F is a strong σ-group.
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10.1. Cyclic cubic fields F with Cl5F ' (5, 5)

Proposition 1. (σ-groups of degree 3 with type (5, 5))
The transfer kernel type of a pro-5 group G with abelianization
G/G′ ' (5, 5) which is a σ-group of degree 3 is restricted to
the following admissible types
• (0, 0, 0, 0, 0, 0),
• two 3-cycles,
• a 6-cycle,
• the identity,
• three 2-cycles.

Corollary 1. (Cyclic cubic fields of type (5, 5))
The second 5-class group G2

5F of a cyclic cubic field F with
5-class group Cl5F ' (5, 5) is restricted to the isomorphism
classes of the following groups
• 〈25, 2〉,
• 〈125, 3〉,
• a descendant of 〈3125, 3〉,
• 〈3125, 9〉,
• 〈3125, 12〉,
• 〈3125, 14〉,
• a descendant of 〈3125, 10〉
All these finite 5-groups are σ-groups of degree 3.
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Examples 1. In the range 1 < c < 1 000 000 of conductors,
there are 481 occurrences of Cl5F ' (5, 5). The dominating
part of 463 fields (96%) has G2

5F ' 〈125, 3〉 with six total
transfer kernels κ1(F ) = (0, 0, 0, 0, 0, 0). Exceptions occur for
the following 18 conductors only, confirming Corollary 1:

No. c Factors G2
5F κ(F )

1 66 313 13, 5101 〈3125, 12〉 a 6-cycle

2 68 791 prime 〈3125, 14〉 the identity

3 77 971 103, 757 〈3125, 14〉 the identity

4 87 409 7, 12487 〈3125, 12〉 a 6-cycle

5 199 621 prime 〈3125, 9〉 two 3-cycles

6 317 853 9, 35317 〈3125, 12〉 a 6-cycle

7 425 257 7, 79, 769 〈3125, 14〉 the identity

8 464 191 7, 13, 5101 〈3125, 12〉 a 6-cycle

9 481 537 7, 68791 〈3125, 14〉 the identity

10 545 797 7, 103, 757 〈3125, 14〉 the identity

11 596 817 9, 13, 5101 〈3125, 12〉 a 6-cycle

12 619 119 9, 68791 〈3125, 14〉 the identity

13 678 303 9, 75367 〈3125, 12〉 a 6-cycle

14 701 739 9, 103, 757 〈3125, 14〉 the identity

15 767 623 prime 〈3125, 9〉 two 3-cycles

16 786 681 7, 9, 12487 〈3125, 12〉 a 6-cycle

17 894 283 13, 68791 〈3125, 14〉 the identity

18 909 229 487, 1867 〈3125, 14〉 the identity

The first, resp. last, example of the dominating part is

c = 6 901 = 67 · 103, resp. c = 96 733 = 7 · 13 · 1063.
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10.2. Cyclic quartic fields F with Cl3F ' (3, 3)

Proposition 2. (σ-groups of degree 4 with type (3, 3))
The transfer kernel type of a pro-3 groupG with abelianization
G/G′ ' (3, 3) which is a σ-group of degree 4 is restricted to
the 6 admissible types a.1, b.10, D.5, F.7, G.16, G.19 among
the 23 possible types. The remaining 17 types a.2, a.3, c.18,
c.21, d.19, d.23, d.25, A.1, D.10, E.6, E.8, E.9, E.14, F.11,
F.12, F.13, H.4 are forbidden.

Corollary 2. (Cyclic quartic fields of type (3, 3))
The second 3-class group G2

3F of a cyclic quartic field F with
3-class group Cl3F ' (3, 3) is restricted to the isomorphism
classes of 〈9, 2〉, 〈27, 3〉, 〈243, 7〉, a descendant of 〈243, 9〉 or a
descendant of 〈243, 3〉.
All these finite 3-groups are σ-groups of degree 4.

Examples 2. A cyclic quartic field has a unique represen-

tation F = Q
(√

a(d + b
√
d)

)
with d = b2 + c2, a ∈ Z,

b, c ∈ N, a and d squarefree and coprime. We have G2
3F '

〈27, 3〉, κ(F ) ∼ (0, 0, 0, 0), for (a, b, c, d) = (3, 9, 5, 106),
〈243, 7〉, κ(F ) ∼ (4, 2, 2, 4), for (a, b, c, d) = (−1, 10, 7, 149),
〈729, 57〉, κ(F ) ∼ (2, 1, 4, 3), for (a, b, c, d) = (−3, 10, 1, 101),
〈729, 37〉, κ(F ) ∼ (0, 0, 4, 3), for (a, b, c, d) = (−5, 1, 6, 37),
Y −#2; 48, κ(F ) ∼ (1, 2, 4, 3), for (a, b, c, d) = (−7, 5, 4, 41),
where 〈729, 57〉 is an immediate descendant of 〈243, 9〉,
〈729, 37〉 is an immediate descendant of 〈243, 3〉, and
Y := 〈2187, 64〉 is a descendant of step size 2 of 〈243, 3〉.
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10.3. Cyclic quartic fields F with Cl5F ' (5, 5)

Proposition 3. (σ-groups of degree 4 with type (5, 5))
The transfer kernel type of a pro-5 group G with abelianiza-
tion G/G′ ' (5, 5) which is a σ-group of degree 4 is restricted
to the admissible types with two 2-cycles, a 4-cycle, iden-
tity, and descendant types of (0, 0, 0, 0, 0, 0), (0, 2, 2, 2, 2, 2),
(0, 1, 1, 1, 1, 1).

Corollary 3. (Cyclic quartic fields of type (5, 5))
The second 5-class group G2

5F of a cyclic quartic field F with
5-class group Cl5F ' (5, 5) is restricted to the isomorphism
classes of 〈25, 2〉, 〈3125, 11|14〉, a descendant of 〈125, 3〉, a
descendant of 〈3125, 7〉 or a descendant of 〈3125, 3〉, 〈3125, 4〉,
〈3125, 5〉.
All these finite 5-groups are σ-groups of degree 4.

Examples 3. We have G2
5F '

〈3125, 11〉, κ(F ) a 4-cycle, for (a, b, c, d) = (−457, 2, 1, 5),
〈3125, 14〉, κ(F ) the identity, for (a, b, c, d) = (−581, 2, 1, 5).
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11. The first 3-class tower of length 2

Notation. Logarithmic type invariants of abelian 3-groups,
for instance (13) = (111)=̂(3, 3, 3) and (21)=̂(9, 3).

Let F/Q be an algebraic number field
with 3-class group Cl3F ' (3, 3), and
E1, . . . , E4 be the unramified cyclic cubic extensions of F .

Theorem. Suppose the capitulation of 3-classes of F in
E1, . . . , E4 is of type κ1F ∼ (2, 2, 4, 1) (called type D.10).

Then the length of the 3-class tower of F is `3F = 2
and τ1F ∼ [21, 21, 13, 21].

(The given TKT κ1 determines the length and the TTT τ1.)

Examples. Let F = Q(
√
d) be a quadratic field.

(1) Among the 2 020 imaginary quadratic fields F = Q(
√
d)

with 3-class group Cl3F ' (3, 3) and −106 < d < 0, there
are 667 with 3-capitulation of type κ1F ∼ (2, 2, 4, 1). With a
relative frequency of 33.0%, this type is definitely dominating.

(2) Among the 2 576 real quadratic fields F = Q(
√
d) with

3-class group Cl3F ' (3, 3) and 0 < d < 107, there are 263
with a second 3-class group of even coclass. Among the latter,
there are 93 with 3-capitulation of type κ1F ∼ (2, 2, 4, 1).
With a relative frequency of 35.4%, this type is dominating
when it is taken with respect to cc(G2

3F ) ≡ 0 (mod 2).

The discriminants of the former start with d = −4 027,
those of the latter with d = 422 573.
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Proof. A search for type D.10, κ1 ∼ (2, 2, 4, 1), in the de-
scendant tree T R of the root R := C3 × C3 leads to the
unique candidate for M = G2

3F after two steps with path
R = 〈9, 2〉 ← 〈27, 3〉 ← 〈243, 5〉 = M. The group M is a
metabelian Schur σ-group and any epimorphism onto M must
be an isomorphism [7]. Thus, we have `3F = dl(M) = 2. �

Theorem 1. A metabelian p-group M of nilpotency class
cl(M) = 3 has a trivial cover cov(M) = {M}.
Theorem 2. A capable p-group G of odd nilpotency class
cl(G) ≡ 1 (mod 2) cannot be a strong σ-group.

Corollary. A capable metabelian p-group M of nilpotency
class cl(M) = 3 is forbidden as the second p-class group G2

pF

of any quadratic field F = Q(
√
d).

Proof. By Theorem 1, we have cov(M) = {M}. If G2
pF

were isomorphic to M, then G∞p F ' G2
pF ' M. However,

then Theorem 2 yields the contradiction that G∞p F were not
a strong σ-group. �

Examples. 1. The parent πM = 〈243, 4〉 of the metabelian
3-group M = 〈729, 45〉, both with TKT H.4, κ1 ∼ (4443), is
capable and has cl(πM) = 3.
Thus, a quadratic field F cannot have G2

3F ' πM.
2. The parent πM = 〈2187, 301〉 of the metabelian 3-group
M = 〈6561, 2048〉, both with TKT G.16, κ1 ∼ (4231), has a
finite cover cov(πM) = {πM, 〈6561, 619〉} and relation rank
d2(πM) = 4. Since G = 〈6561, 619〉 is capable with odd class
cl(G) = 5, a quadratic field F cannot have G2

3F ' πM.
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